Shortest Paths

Consider digraph $G = (V, E)$ with edge weight $w(e)$ associated with each edge e ($w: E \rightarrow \mathbb{R}$).

The weight of some path $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ is $w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$.

E.g.,

\[
\begin{align*}
V_1 & \rightarrow V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow V_5 \\
4 & \rightarrow 2 \rightarrow -5 & 1 \\
& & & & -2
\end{align*}
\]

$w(p) = -2$

Shortest path from u to v is a path of minimum weight from u to v. The shortest path weight is the weight of such a path: $\delta(u, v) = \min \{ w(p) : p \text{ is a path from } u \text{ to } v \}$.

Also, $\delta(u, v) = +\infty$ if no path from u to v exists.

One subtlety:

\[
\begin{align*}
\delta(u, v) &= -\infty \\
\text{(Increasing/decreasing weights)}
\end{align*}
\]

Optimal substructure:

Theorem: A subpath of a shortest path is also a shortest path.

Proof:

By cut-and-paste, if a shorter $x \rightarrow y$ path existed, we could insert it into the $u \rightarrow v$ path and produce a shorter $u \rightarrow v$ path, contradicting the given that $u \rightarrow v$ was a shortest path.
Triangle Inequality

Theorem: For all $u, v, x \in V$, $d(u, v) \leq d(u, x) + d(x, v)$

Proof:

If triangle inequality violated, then u, x, v lie a shorter path than u, x, v.

Contradiction statement that $d(u, v)$ corresponds to a shortest path.

Adjacency-List Representation

```
A -> B, D
B -> C, D
C -> B, D
D -> A, B, C
E -> C
```

Size = |E| for directed graph
Size = 2|E| for undirected graph

Min-Priority Queue

A data structure for maintaining a set S of elements, each with an associated value (key), supporting:

* Insert (S, x) inserts the element x into S.
* Minimum (S) returns element with smallest key.
* Extract-Min (S) returns and removes element with smallest key.
* Decrease-Key (S, x, k) decreases the value of element x's key to k.

LIB 2
Single-source shortest paths problem

Goal: From a given source vertex \(s \in V \), find the shortest-path weights \(\delta(s,v) \) for all \(v \in V \).
Here we assume \(w(u,v) \geq 0 \), so \(\delta(s,v) \geq 0 > -\infty \).

Dijkstra's Algorithm (only valid for non-negative weights)

Idea: Greedy Algorithm

1. Maintain set \(S \) of vertices whose shortest-path distances from \(s \) are known.
2. At each step, add to \(S \) the vertex \(u \in V - S \) whose distance estimate from \(s \) is minimum.
3. Update distance estimates of vertices adjacent to \(u \).

Dijkstra \((G, w, s)\)

\[
\begin{align*}
 d[s] & \leftarrow 0 \\
 d[V] & \leftarrow -\infty \text{ for each } v \in V - \{s\} \\
 S & \leftarrow \emptyset \\
 Q & \leftarrow V \quad (\text{priority queue of vertices keyed by } d) \\
 \text{while } & Q \neq \emptyset \\
 \quad & \text{do } u \leftarrow \text{Extract-Min}(Q) \\
 \quad & S \leftarrow S \cup \{u\} \\
 \quad & \text{for each } v \in \text{Adj}[u] \\
 \quad & \quad \text{do if } d[v] > d[u] + w(u,v) \\
 \quad & \quad \quad \text{then } d[v] \leftarrow d[u] + w(u,v) \\
 \quad & \quad \text{relaxation step} \\
 \quad & \quad \text{Implicit DECREASE-KEY}
\end{align*}
\]
Example:

\[S = \{ A \} \]

Correctness (Part I)

Lemma: Invariant \(d[w] \geq \delta(s, v) \quad \forall v \in V \) at all times.

Proof:

\[d[w] = 0 \text{ and } d[w] = +\infty \text{ for } v \neq s ; \quad \delta(s, s) = 0 \text{ and } \delta(s, v) \leq \infty \quad \forall v, \text{ so } \delta \text{ is consistent.} \]

Suppose invariant fails, that \(v \) is the first vertex with \(d[w] < \delta(s, v) \) and \(u \) is the vertex that caused \(d[w] \) to change by \(d[w] = d[w] + \omega(u, v) \).

Then \(d[w] = d[w] + \omega(u, v) \)

\[\leq \delta(s, u) + d[w] \quad \text{triangle inequality} \]

\[\leq \delta(s, u) + \omega(u, v) \quad \text{shortest path} \]

\[\leq d[w] + \omega(u, v) \quad \text{by previous lemma} \]

Then \(d[w] < d[w] + \omega(u, v) \) violates

Correctness (Part II)

Theorem: When Dijkstra's algorithm terminates, \(d[w] = \delta(s, v) \quad \forall v \in V \)

Proof: \(d[w] \) doesn't change once added to \(S \), so suffices to show true when added

Suppose \(u \) is first vertex added to \(s \) to \(S \), for which \(d[w] \neq \delta(s, u) \)

\[d[w] = \delta(s, u) \quad \text{by previous lemma} \]

Let \(p \) be a shortest path from \(s \) to \(u \) \([w(p) = \delta(s, u)] \)

Consider first place \(p \) enters \(S \) \([\text{via edge } (x, y)] \)

\((y \text{ is first vertex along } p \text{ in } V - S, x \text{ is predecessor of } y \text{ along } p) \)
Because \(u \) is first violation, \(d[s,u] = \delta(s,u) \).

When \(x \) was added to \(S \), we relaxed \((o,y) \) and set
\[
d[x,y] = \delta(s,x) + \omega(x,y) = \delta(s,y)
\]
because subpaths of shortest paths are shortest paths.

Thus
\[
d[x,y] = \delta(s,y) \leq \delta(s,u) \leq d[u,l] \tag{623.5}
\]
sub-path previous lemma

But \(d[u,l] \leq d[x,y] \) by Dijkstra's choice of \(u \)
\(\Leftarrow \) emphasizes need for greedy step

So \(d[x,y] = \delta(s,y) = \delta(s,u) \)

Contradiction.

Analysis

\[d[u,l] \rightarrow \infty \text{ for each } v \in V-\{s\} \quad \text{ \(O(V) \)}\]

\[
\begin{align*}
&\text{while} \ Q \neq \emptyset \quad \text{do} \quad u \gets \text{Extract-Min}(Q) \\
&\quad S \gets S \cup \{u\} \\
&\quad \text{for each } v \in \text{Adj}[u] \\
&\qquad \text{do if } \ d[v,l] > d[u,l] + \omega(u,v) \\
&\qquad \quad \text{then } \ d[v,l] \gets d[u,l] + \omega(u,v)
\end{align*}
\]

DECREASE-KEY : \(O(1) \) \(\text{ worst-case aggregate analysis } \)

Time = \(O(V) \cdot \text{Extract-Min} + O(E) \cdot \text{DECREASE-KEY} \)

(Same as Prim's MST algorithm)

<table>
<thead>
<tr>
<th>(Q)</th>
<th>Extract-Min</th>
<th>Decrease-Key</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(V))</td>
<td>(O(1))</td>
<td>(O(V^2)) for all vertices reachable</td>
</tr>
<tr>
<td>binary heap</td>
<td>(O(lg V))</td>
<td>(O(lg V))</td>
<td>(O(E))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(lg V)) amortized</td>
<td>(O(lg V)) amortized</td>
<td>(O(E+VlgV)) worst-case</td>
</tr>
</tbody>
</table>
Unweighted Graphs

Suppose \(w(u, v) = 1 \) \(\forall (u, v) \in E \). Then Dijkstra's algorithm can be improved using simple FIFO queue in place of priority queue.

(Breadth-First-Search) first-in first-out

\[
\begin{align*}
\text{BFS}(G, s) & \\
d[S] & = 0 & \\
d[u] & = \infty \text{ for each } u \in V - \{s\} & \\
Q & = \{s\} & \\
\text{while } Q \neq \emptyset & \\
& \quad \text{do } u \leftarrow \text{Dequeue}(Q) & \\
& \quad \text{for each } v \in \text{Adj}[u] & \\
& \quad \quad \text{do if } d[v] = \infty & \\
& \quad \quad \quad \text{then } d[v] \leftarrow d[u] + 1 & \\
& \quad \text{Enqueue}(Q, v) & \\
\end{align*}
\]

Analysis
Time: \(O(V + E) \) All queue operations are \(O(1) \); there is no Decrease-Key.

Example:

\[
\begin{align*}
& \text{Q: A, B, D, E, F, K} \\
& \text{0 1 1 2 2 3 3 4 4} \\
\end{align*}
\]

Correctness of BFS

Key Idea: FIFO queue in BFS mimics priority queue in Dijkstra.

Invariant: \(v \) immediately after \(u \) in queue \(\Rightarrow d[v] \) is either \(d[u] \) or \(d[u] + 1 \).