Lecture 19: April 23, 2002

Pattern matching:

- Randomized (Karp-Rabin)
- Deterministic (Knuth-Morris-Pratt)
Pattern Matching

Input: Two strings

- \(T[1 \ldots n] \) (the text)
- \(P[1 \ldots m] \) (the pattern)

Assume all characters are just bits, for simplicity.

Task: Check if pattern appears in text and if so, report such an occurrence.

E.g., this is a match:

```
0 1 0 1 1 1 1 0 0 0
```

```
1 1 1 0
```
Natural algorithm

- Let $T^s = T[s + 1 \ldots s + m]$, $s = 0, 1 \ldots$
- For every s check if $T^s = P$ (say, left to right)
- Running time: $\Theta(nm)$
More clever algorithm

• Stop checking $T^s = P$ when the \textit{first} difference is detected

• Much better in practice

• $O(n + m)$ for random text and pattern

• Still $\Theta(nm)$ in the worst case

\[
T: \begin{array}{ccccccccccc}
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

\[
P: \begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]
Our goal

• $O(n + m)$ worst case
• By modifying the natural algorithm
 – Check $T^s = P$ more efficiently using hashing
 – Check $T^s = P$ only for *important* symbols
First algorithm

• Consider the m-bit strings T^s and P

• Can think of them as of long integers; we just need to check their equality

• Problem: the integers are large (m-bit long)
 ⇒ cannot compare in constant time

• Use hashing to reduce their length! (to $O(\log n)$)
Hashing

Want a function h such that

1. For all s we have $h(P) = h(T^s)$ if and only if $P = T^s$

2. We can compute all values $h(T^s)$ in linear time

How to find h? E.g.,

$$h(x) = ax + b \text{ mod } q$$

$(a, b \text{ random})$ satisfies (1) but not (2)!
Karp-Rabin approach

- For \(R = R[0 \ldots m - 1] \) define
 \[
 h(R) = R[0]2^0 + R[1]2^1 + \ldots R[m-1]2^{m-1} \pmod{q}
 \]
 where \(q \) is a random prime

- Can easily compute \(h(T^s) \) given \(h(T^{s-1}) \), since
 \[
 h(T^s) = 1/2(h(T^{s-1}) - T[s]) + 2^{m-1}T[m+s] \pmod{q}
 \]
 i.e., shift the number to the left and add new most significant bit

 Note: since the computation is done modulo \(q \), we use \(2^{m-1} \pmod{q} \) instead of \(2^{m-1} \).

- Runs in linear time if \(q \) is \(O(\log n) \) bits long
 \[\Rightarrow\] property (2) satisfied
Collisions

• What kind of primes are bad? Those s.t. \(T^s \neq P \) but \(h(T^s) = h(P) \)
• If \(h(T^s) - h(P) = 0 \), then \(q \) must divide \(x = T^s - P \)
• There are at most \(\log_2(|x|) \leq m \) such primes
 – product of any \(k \) primes has value > \(2^k \)
 – \(|x| \leq 2^m \)
• Random prime from a set of \(2nm \) primes is bad for fixed \(s \) with probability < \(\frac{1}{2n} \)
• ... is bad for any \(s \) with probability < \(\frac{n}{2n} = 1/2 \)
Analysis ctd.

Still need to show:

- How to pick a random prime from a set of $2nm$ primes?
- Is the prime a short integer?

Questions are left to the careful reader ...

Conclusion:

- Running time $O(n + m)$
- Probability of correctness 1/2
Second algorithm

T: [0 0 0 0 0 1 1 1 1 1 1 1]

P: [0 0 0 0 0 0]

Problems:

- We check $T^s = P$ even when we read enough symbols to know it is false
- Should “recycle” the information
- Two ideas:
 - Increment s by a lot if you can
 - Do not redo the comparisons already made
“Little birdie” approach

- The algorithm performs a check if $T^s = P$
- If the comparison $T^s = P$ fails (i.e., $T^s[k] \neq P[k]$), the birdie tells us the smallest $s' > s$ so that based on the symbols read so far, it could be the case that $T^{s'} = P$
- Formally, the birdie returns the largest suffix of $T^s[1 \ldots k]$ which is a prefix of P
- We proceed to checking if $T^{s'} = P$, starting from the first unread position

01011111000
Analysis

• Running time: $O(n)$ comparisons and birdie queries

• Implementation of the little birdie
 (i.e., how to find quickly the largest suffix of $T^s[1 \ldots k]$
 which is a prefix of P):
 − We prepare the birdie for a specific pattern P
 − Naively, our birdie could have exponential size
 − However, $T^s[1 \ldots k] = P^s[1 \ldots k - 1]T^s[k]$
 \Rightarrow the birdie only needs to know $k, T^s[k]$
 − Thus, the birdie can be implemented as an array $B^s_P[1 \ldots m, 0 \ldots 1]$
 \astGiven P, the birdie B^s_P can be computed in time $O(m)$ (for binary alphabet)

• Overall running time: $O(n + m)$
For fans of pattern matching

- Boyer-Moore algorithm
 - $O(n + m)$ worst case
 - $O\left(\frac{n}{m} \log n\right)$ average case
- Galil-Seiferas
 - in place (i.e., no birdies)