Lecture 24: May 9, 2002

Today:

- NP-completeness continued (connecting more things)
In the previous episode

• NP - problems whose solutions are verifiable in polynomial time
• Poly time reductions
• Any problem in NP can be reduced to SAT, SAT in NP ⇒ SAT NP-complete
• SAT → 3SAT, 3SAT in NP ⇒ 3SAT NP-complete
Today’s menu

- SAT → Clique
- Clique → Independent Set
- Independent Set → Vertex Cover
- Vertex Cover → Set Cover
- Set Cover → Dominating Set

Therefore, all of them are NP-hard (and NP-complete).
SAT \rightarrow Clique

Clique:

- **Input**: Undirected graph (V, E), $K > 0$.
- **Output**: Is there $C \subseteq V$ of size $\geq K$ such that every pair of vertices in C has an edge between them.

SAT:

- **Input**: n Boolean variables x_1, \ldots, x_n and a formula ϕ with m clauses, e.g.,

$$x_1 \lor x_2 \lor x_5, \ x_1 \lor \neg x_2, \ldots$$

- **Goal**: Check if there exists a TRUE/FALSE assignments of variables such that every clause is satisfied, i.e., every clause above has one term set to TRUE.

Our goal: given a SAT formula $\phi = C_1 \ldots C_m$, produce $G = (V, E)$ and K, such that ϕ satisfiable if and only if G has clique of size $\geq K$.
Reduction

Glossary: a literal is either x_i or $\neg x_i$.

Reduction:

- For each literal l_j in ϕ, create a vertex v_j
- Create an edge $v_j - v_{j'}$ if $\neg v_j, v_{j'}$ do not correspond to literals from the same clause
 $\neg l_j$ is not a negation of $l_{j'}$

E.g., the formula $x_1 \lor x_2 \lor x_3$, $\neg x_2 \lor \neg x_3, \neg x_1 \lor x_2$ is transformed into graph

Claim: ϕ satisfiable if and only if clique $\geq m$.
Independent set

Independent set (IS):

- Input: Undirected graph \((V, E), K > 0\).
- Output: Is there \(S \subseteq V\) of size \(\geq K\) such that every pair of vertices in \(S\) has no edge between them.

Clique for \((V, E) \rightarrow IS for (V', E')\):

- Keep the same vertex set, i.e., \(V' = V\)
- Take \(E'\) to be the complement of \(E\)

Claim: any clique \(C\) in \((V, E)\) is an independent set in \((V', E')\).

Corollary: \((V, E)\) has clique \(\geq K\) if and only if \((V', E')\) has independent set \(\geq K\).
Vertex cover

Vertex cover (VC):

- **Input**: Undirected graph \((V, E)\), \(L > 0\).
- **Output**: Is there \(C \subseteq V\) of size \(\leq L\) such that every edge in \(E\) has at least one endpoint in \(C\) ?

IS for \((V, E) \rightarrow VC for \((V', E')\):

- Keep the same vertex set \((V' = V)\)
- Keep the same edge set \((E' = E)\)
- Set \(L = n - K\)

Claim: \(S\) is an independent set in \((V, E)\) if and only if the *complement* of \(S\) is a vertex cover for \((V', E')\).

Corollary: \((V, E)\) has independent set \(\geq K\) if and only if \((V', E')\) has vertex cover \(\leq n - K\).
Set cover

Set cover (SC):

- **Input**: a family \mathcal{S} of sets $S_1 \ldots S_n \subset U$, $L > 0$.
- **Output**: Is there $I \subset \{1 \ldots n\}$, of size $\leq L$ such that

$$\bigcup_{i \in I} S_i = U$$

VC for $(V, E) \rightarrow$ SC for \mathcal{S}, U:

- Set $U = E$
- For each vertex $v \in V$, set S_v to be the set of edges incident to v

Claim: C is a vertex cover for (V, E) if and only if $I = C$ covers E.

Dominating set

Dominating set (DS):

- Input: a graph $G = (V, E)$, $L > 0$.
- Output: Is there $S \subseteq V$, of size $\leq L$, which dominates V, i.e., such that any vertex is either in S is adjacent to a vertex in S?

SC for $S, U \rightarrow$ DS for (V, E).
SC to DS

Proof by example:

- Universe $U = \{u_1, u_2, u_3, u_4\}$
- Sets $\{u_1, u_3\}, \{u_1, u_4\}, \{u_2, u_3, u_4\}$

We create a graph (V, E) as follows:

Claim: There is a set cover of size $\leq L$ if and only if there is a dominating set of size $\leq L + 1$.
Proof

• Set cover \(I \to \) dominating set \(S \):
 – Take all vertices corresponding to sets in \(I \)
 – Take vertex \(u \)
 – We get a dominating set \(S \) of size \(|I| + 1\)
• Dominating set \(S \to \) set cover \(I \)
 – Transform the dominating set so that
 * Vertex \(u \) is in \(S \). To this end, observe that either \(u \) or \(v \) must be in \(S \). If \(v \) is in \(S \) and \(u \) is not, we remove \(v \) and add \(u \). The result is still a dominating set.
 * \(S \) does not contain any \(u_i \). To this end, for any \(u_i \in S \) we
 - Remove \(u_i \) from \(S \)
 - Add any vertex \(S_j \) with an edge to \(u_i \)
 The resulting set is still a dominating set.
 – The set cover \(I \) is defined by nodes \(S_i \in S \).