Lecture 23: May 7, 2001

Today (and next lecture):

- P and NP (or, interconnectedness of all things)
Have seen so far

- Algorithms for lots of problems
 - Running times $O(n) \ldots O(nm^2)$
 - I.e., polynomial in the input size
- Can we solve all (or most) interesting problems in polynomial time?
- Not really ...
Example problems

• Travelling Salesperson Problem (TSP):
 – Input: Undirected graph with lengths on edges.
 – Output: Smallest tour that visits every vertex exactly once.
 – Best running time: $O(n2^n)$.

• Clique:
 – Input: Undirected graph (V, E)
 – Output: Largest subset $C \subseteq V$ such that every pair of vertices in C are adjacent to each other.
 – Best running time: $n^{O(n)}$.
What can we do?

- Spend more time working on algorithms for those problems - unlikely to succeed
- Prove that there are no polynomial time algorithms for those problems
 - Would be great
 - Seems really hard
 - Best lower bound for any natural problem:
 - $\Omega(n^2)$ for restricted computational model
 - $4.5n$ for realistic computational model
- Show that those hard problems are computationally equivalent
 - If any of them can be solved in poly time, all of them can be solved in poly time
 - Works for at least 10,000 of hard problems
Benefits of showing the equivalence

- Combines research efforts
- Justifies inability to find fast algorithms. I.e., “I might be stupid, but then so are all the other famous people!”
- One day, somebody might show a lower bound for \textit{one} problem. Then we will \textit{know} that \textit{all} are hard.
Class of problems of interest

- Decision problems: answer YES or NO. E.g., “is there a TSP tour with length $\leq K$?”
- Solvable in *nondeterministic polynomial time* (NP). Intuitively: the solution can be *verified* in polynomial time. E.g., if someone gives us a tour T, we can verify if T is a tour in G of length $\leq K$. Therefore, TSP is in NP.
P and NP

A problem Π is solvable in poly time (or $\Pi \in P$), if there is a poly time algorithm $V(\cdot)$, such that for any input x

$$\Pi(x) \text{ is YES if and only if } V(x) = \text{YES}$$

A problem Π is solvable in nondeterministic poly time (or $\Pi \in NP$), if there is a poly time *verification* algorithm $V(\cdot, \cdot)$, such that for any input x

$$\Pi(x) \text{ is YES if and only if there exists certificate } y \text{ of size } \text{poly}(|x|) \text{ such that } V(x, y) = \text{YES}$$
Examples

• TSP: $V(x, y)$ interprets x as a graph G, y as a tour T, and checks if the length of T is $\leq K$

• Clique: $V(x, y)$ interprets x as a graph G, y as a set C, and checks if all pairs of vertices in C are adjacent

• ...

Thus, Clique and TSP are in NP.
Reductions

A problem Π is (poly time) reducible to problem Π', if there exists a poly time computable function f which maps inputs x of Π into inputs of Π', such that for any x

$$\Pi(x) = \Pi'(f(x))$$

Fact: if Π' is poly time solvable, and Π is poly time reducible to Π', then Π is also poly time solvable.

Thus, if Π is poly time reducible to Π', it means Π is not harder than Π'.
Recap

- A class of problems, i.e., NP
- Example problems in NP: TSP and Clique
- Notion of reduction

Our goal: show equivalence between “hard” problems.

\[P_1 \quad P_2 \]
\[P_4 \]
\[P_3 \quad P_5 \]

Options:
- Reduce every problem to every other problem
- Spanning tree of reductions (each “edge” two way)
- Show all problems in NP are reducible to a fixed Π. To show Π' is “hard”, reduce Π to Π'.
The problem Π

Satisfiability problems:

- **SAT:**
 - Input: n Boolean variables x_1, \ldots, x_n and a formula ϕ with m clauses, e.g.,
 \[
 x_1 \lor x_2 \lor x_5, \ x_1 \lor \neg x_2, \ldots
 \]
 - Goal: Check if there exists a TRUE/FALSE assignments of variables such that every clause is satisfied, i.e., every clause above has one term set to TRUE.

- **3SAT:** as above, but at most 3 variables per clause
Cook’s theorem

Theorem: For any Π in NP, Π is poly time reducible to SAT.

Definition: a problem Π such that any problem $\Pi' \in$ NP is poly time reducible to Π, is called *NP-hard*.

Definition: an NP-hard problem Π which belongs to NP is called *NP-complete*.

Corollary: SAT is NP-complete.
Hardness of 3SAT

Reduce SAT to 3SAT:

• Need to take any SAT formula ϕ, and transform them into 3SAT formula $f(\phi)$, so that ϕ is satisfiable if and only if $f(\phi)$ is satisfiable

• Reduction: for each clause $C_i = x_1 \lor x_2 \lor \ldots \lor x_k$, create

$f(C_i) = x_1 \lor y_2 \ldots k, \neg y_2 \ldots k \lor x_2 \lor y_3 \ldots k, \ldots, \neg y_k \ldots k \lor x_k$

(y’s are different for each clause) and define

$f(\phi) = f(C_1), \ldots, f(C_m)$

• Clearly, reduction is poly time

• Correctness: need to show ϕ is satisfiable if and only if $f(\phi)$ is satisfiable
Correctness

- Assume ϕ satisfiable. Then we can set y's so that ϕ' is satisfiable. Consider $C = x_1 \lor \ldots \lor x_k$. Assume x_i is set to TRUE. Then we set $y_{1..k}, \ldots y_{i..k}$ to TRUE, and the rest to FALSE. Check for yourself this satisfies the formula:

$$x_1 \lor y_{2..k}, \neg y_{2..k} \lor x_2 \lor y_{3..k}, \ldots, \neg y_{k..k} \lor x_k$$

- Assume $f(\phi)$ satisfiable. By contradiction, assume that the same assignment does not satisfy ϕ. In particular, let $C_i = x_1 \lor \ldots \lor x_k$ be FALSE. Then

$$x_1 \lor y_{2..k}, \neg y_{2..k} \lor x_2 \lor y_{3..k}, \ldots, \neg y_{k..k} \lor x_k$$

is equivalent to

$$y_{2..k}, \neg y_{2..k} \lor y_{3..k}, \ldots, \neg y_{k..k}$$

which is always FALSE - contradiction!

Corollary: 3SAT is NP-hard (and since it is in NP, it is also NP-complete)