Lecture 22: May 2, 2001

Segment intersection

- Given: a set S of n segments $s_1 \ldots s_n$.
- Goal: find all pairs $s, s' \in S$ of intersecting segments (or just detect if any such pair exists)
Motivation

• Collision detection. E.g., make sure that the streets assigned to different rallies do not intersect.
• Map overlay
• ...

Enables to illustrate sweep-line technique.
Naive solution

- Exhaustive search: for each pair of segments, check if they intersect
- $\Theta(n^2)$ running time:
 - worst-case optimal for reporting all intersections

- ...but usually number of intersections $P << n^2$, so output sensitive algorithm would be better
- definitely inefficient for detecting existence of an intersection
Simpler problem: 1d case

• Given: n intervals $I_1 \ldots I_n$, $I_j = [l_i, r_j]$
• Goal: report all pairs of intersecting intervals
1d case ctd.

Algorithm:

- Sort all endpoints l_j, r_j
- For each l_j, enumerate consecutive successors of l_j in the sorted order until reaching r_j

Running time: $O(n \log n + P)$
Orthogonal 2d segments

Assume we have only vertical/horizontal segments (rallies take place in Manhattan)
Algorithm

- Sort the x-coordinates of horizontal segments
- Assign each vertical segment to proper stripe
- Initialize a data structure keeping y-coordinates of horizontal intervals
- “Sweep” the stripes, i.e., for each stripe:
 - Update the set of y coordinates of the horizontal segments intersecting with the stripe
 - For each vertical segment contained in the stripe, check if it contains any of those y coordinates
Complexity and implementation

- Sorting: $O(n \log n)$
- Assignment of segments to stripes: $O(n)$
- Maintain a dynamic binary search tree enabling $O(\log n)$ time successor, insert, delete operations:
 - When moving to the next stripe, update the BST: total cost $O(n \log n)$
 - For each vertical segment, check intersection using the successor operation: total cost $O(n \log n + P)$

Total cost: $O(n \log n + P)$.
Musings

• The algorithm essentially reduces the problem from 2d to 1d
• Two data structures used:
 – horizontal: the trail of the “sweep line”
 – vertical: BST updated during the sweep
The general case (well, almost)

- Assume no two points (endpoints or intersections) have the same x coordinates
- The horizontal data structure H contains x-coordinates of important points (events) in sorted order:
 - segment endpoints
 - intersection points - cannot determine from the beginning, so must use *dynamic* data structure
- The vertical data structure V maintains the relative order of segments intersecting the sweep line
Details

For each new event \(p \):

1. Handle the event:
 (a) If \(p \) is the left endpoint of a segment, add the segment to \(V \)
 (b) If \(p \) is the right endpoint of a segment, remove the segment from \(V \)
 (c) If \(p \) is an intersection point of \(s \) and \(s' \), swap the order of \(s \) and \(s' \) in \(V \) and report \(p \)

2. For each segment \(s \) with a new neighbor \(s' \) in \(V \)
 (a) Check if \(s, s' \) intersect on the right of the sweep line
 (b) If so, add their intersection point to \(H \)
 (avoid duplicates in \(H \)).

Total complexity: \(O((n + P) \log n) \).
Correctness

• All reported intersections are correct.

• Assume there exist an intersection point $p = (x, y)$ not reported by the algorithm. Take the first such intersection (of s, s').

• There must have been a time $x' < x$ when s and s' were neighbors on a sweep line at position x'.

• Since all events before x were handled correctly by the algorithm, s and s' must have been neighbors in V at some point before x.

• Therefore, their intersection should have been reported.