Lecture 14: April 2, 2002

Disjoint Set Data Structure

• Definition

• Linked-list implementation

• Forest implementation

• Speedups
Disjoint Set Data Structure

Maintains a collection of disjoint sets $S_1 \ldots S_n$, together with a \textit{representative} from each set.

- \textbf{MAKE-SET}(x): creates a new set $S = \{x\}$, the object x becomes the representative of S
- \textbf{UNION}(x, y): replaces S_x, S_y by $S_x \cup S_y$, where
 - S_x is the set containing x
 - S_y is the set containing y
 One of the elements in $S_x \cup S_y$ becomes the representative of $S_x \cup S_y$ (negotiable which one)
- \textbf{FIND}(x): returns the representative of the set containing x
Applications

- Killer app: Minimum Spanning Tree (next lecture)
- In general, useful for maintaining equivalence relations (e.g. connected components of a graph)
Implementation I: Linked-list

• We maintain a bunch of linked lists
• Each list corresponds to one set:
 – List contains nodes pointing to the objects from the set
 – Set elements point back to list nodes
 – All nodes in a list point to the head of the list, which is the representative of the set
 – Head also maintains a pointer to the tail of the list
Linked-list: Example

Linked-list for sets \(\{a, b, d\}, \{c, e\} \).
Implementing the operations

- **MAKE-SET(x)**: create a new list containing pointer to x
- **FIND(x)**: lookup the head of the list which contains pointer to x
- **UNION(x, y)**:
 - Let L_x (resp. L_y) denote the lists pointing to x (resp. y)
 - Attach L_y to the tail of L_x
 - Make all elements of L_y point to the head of L_x
 - Update tails etc
Analysis of Linked-Lists Implementation

- **MAKE-SET(x):** $O(1)$ time
- **FIND(x):** $O(1)$ time
- **UNION(x, y):** $O(\text{length of } L_y)$

How much can **UNION** cost?

- Worst-case: $\Theta(n)$,
 E.g., for sets $\{1 \ldots n/2\}, \{n/2 + 1 \ldots n\}$
- Amortized: total cost of m **UNION** operations?
- Unfortunately, it could be $\Theta(m^2)$:
 - Initial sets $\{1\}, \{2\}, \ldots, \{m - 2\}, \{m - 1\}, \{m\}$
 - Do **UNION**$(m - 1, m)$, **UNION**$(m - 2, m - 1)$
 - **UNION**$(m - i, m - i + 1)$ modifies a list of length i
 - Total cost $\sum_{i=1}^{m-1} i = \Theta(m^2)$
How to Improve UNION?

- Always append the shorter list at the end of the longer one
- Worst-case cost unchanged
- What is the amortized cost?
 - Need to bound the cost of \(m \) UNION operations and \(n \) MAKE-SET operations
 - For each list node \(x \), we would like to bound the number of times its pointers to the representative have been updated
 - But each time \(x \) is updated, the length of the list containing \(x \) increases by a factor \(\geq 2 \)
 - The update to \(x \) can happen at most \(\log n \) times
 - Apart from that, each UNION takes \(O(1) \) time
- Total cost is \(O(n \log n + m) \)
Can we do better?

Will slow down FIND, speed up UNION
Implementation II: Forest

- We maintain a bunch of trees
- Each tree corresponds to one set:
 - Tree contains nodes pointing to the objects from the set
 - Set elements point back to tree nodes
 - Each node points to its parent
 - The root of a tree is a representative for the set
Forest: Example

Forest for sets \(\{a, b, d, f\}, \{c, e\}\).
Implementing the operations

- **MAKE-SET(x)**: create a new tree containing \(x \)
- **FIND(x)**: follow the tree up to the root, return the root
- **UNION(x, y)**:
 - Let \(T_x \) (resp. \(T_y \)) denote the trees containing \(x \) (resp. \(y \))
 - Find the roots of \(T_x \) and \(T_y \) (using FIND)
 - Make the root of \(T_y \) point to the root of \(T_x \)
Analysis of Forest Implementation

- **MAKE-SET**(x): $O(1)$ time
- **FIND**(x): O(depth of T_x)
- **UNION**(x, y): O(depth of T_x + depth of T_y + 1)
 (or constant, if x, y are representatives)
- **How much can FIND cost?**
 - Worst-case $\Theta(n)$,
 Same example as before creates a tree with n nodes and depth $n - 1$
 - Amortization does not help (can repeat **FIND** many times)
- **What can we do?**
Improvements

- Idea I: In **UNION**, attach smaller tree (with fewer nodes) to the larger tree (with more nodes)
 - Results in depth = $O(\log n)$!
 - Proof as before: each time the depth of x increases (by at most 1), the size of the tree grows by ≥ 2

- Idea II: path compression (i.e., be nice to the future **FIND** operations)
 - After finding the root of T_x, make all traversed nodes (on the path from x to root) point to the root
 - Extreme example: a very deep tree can become very shallow
 - Can prove that n **MAKE-SET** ops and m **FIND** ops cost
 \[
 \Theta(n + m(1 + \log_{2+m/n} n))
 \]
Big Bang

What happens if we use both ideas together?

- Define $A_{k}(j)$ to be equal to

 $- j + 1$, if $k = 0$

 $- A_{k-1}(A_{k-1}(\ldots (A_{k-1}(j))))$ (repeated $j+1$ times),
 if $k \geq 1$

- $A_{k}(1)$ grows fast!
 E.g., $A_{4}(1) \gg 2^{2048}$

- Define $\alpha(n) = \min\{k : A_{k}(1) \geq n\}$

- $\alpha(n) \leq 4$ for all conceivable values of n

Theorem: Any sequence of n operations on the above data structure costs $\Theta(n\alpha(n))$.