Lecture 7: February 28, 2002

Data structures:

- Hashing
Data structures

- Encapsulate data (e.g., a set of some elements)
- Supports various operations
 (e.g. INSERT, DELETE, SEARCH)
- Our focus: efficiency of the operations
 (linked list is not so great)
Dictionary data structure

- Maintain a dynamic set T of elements

\[
\begin{array}{c}
\text{key}[x] \\
Satellite Data
\end{array}
\]

- Support dictionary operations:
 - $\text{INSERT}(T, x)$
 - $\text{SEARCH}(T, k)$
 - $\text{DELETE}(T, x)$

where x— > (k, S) consists of key and satellite data.

- Examples:
 - Dictionary (word key to definition)
 - Compiler (symbol key to semantic data)
Direct-Address Table

- Idea:
 - Universe of keys is $U = \{0, 1, \ldots, m - 1\}$.
 - $K = \text{set of keys in use}$.
 - Define a direct-access table, $T[0..m - 1]$, where
 \[
 T[i] = \begin{cases}
 x & \text{if } i \in K \text{ and } \text{key}[x] = i, \\
 \text{NIL} & \text{otherwise}.
 \end{cases}
 \]
Direct-Address Table Dictionary Operations

DIRECT-ADDRESS-SEARCH(\(T, k\))
\[
\text{return } T[k]
\]

DIRECT-ADDRESS-INSERT(\(T, x\))
\[
T[\text{key}[x]] \leftarrow x
\]

DIRECT-ADDRESS-DELETE(\(T, x\))
\[
T[\text{key}[x]] \leftarrow \text{NIL}
\]

- Only \(O(1)\) time required for each operation.
Direct-Address Table: Problems

- Range of keys usually large (e.g. ASCII strings).
- Space required for T may be impractical.
- $|K|$ usually much smaller than $|U|$, so...

Wasteful to allocate space for every key in U.
Hashing

- Fundamental in theory
- Crucial in practice (ask Chief Scientist of Yahoo!)
- Idea:
 - Use hash function h to map U into smaller set, $\{0, 1, \ldots, m - 1\}$.

 $$h : U \rightarrow \{0, 1, \ldots, m - 1\}$$

 - Can create hash table $T[0..m - 1]$, where

 $$T[i] = \begin{cases}
 x & \text{if } key[x] \in K \text{ and } h(key[x]) = i, \\
 \text{NIL} & \text{otherwise}
 \end{cases}.$$
Hash Tables

\[U \] (universe of keys)

\[K \] (actual keys)

\[k_1, k_2, k_3, k_4, k_5 \]

\[T \]

\[0 \]

\[h(k_1) \]

\[h(k_4) \]

\[h(k_2) = h(k_5) \]

\[h(k_3) \]

\[m - 1 \]
Collisions

- If some element already occupies slot to which an inserted element is mapped, a collision occurs.

- Must detect and resolve collisions!
First method: Chaining

- Each position in hash table is pointer to head of a linked list.
- To insert elements into the table, add to head of list.

\[h(9) = h(52) = h(36) = i \]
Chaining Functions

• **Insertion**

\texttt{CHAINED-Hash-Insert}(T, x)

- insert \(x \) at the head of list \(T[h(key[x])] \)

Worst-case running time \(O(1) \).

• **Searching**

\texttt{CHAINED-Hash-Search}(T, k)

- search for an element with key \(k \) in list \(T[h(k)] \)

Worst-case running time proportional to length of list \(T[h(k)] \) (i.e., \(\Theta(n) \)).

• **Deletion**

\texttt{CHAINED-Hash-Delete}(T, x)

- delete \(x \) from the list \(T[h(key[x])] \)

Worst-case running time \(O(1) \) if doubly-linked lists used.
Analysis of Hashing with Chaining

• Assume each key equally likely to be hashed into any slot (simple uniform hashing)

• Given hash table T with m slots holding n elements, define T’s load factor α as n/m

• Time for computing $h(k)$ is $\Theta(1)$.

• To find an element,

 – Look up its position in the table using h.
 – Search for element in linked list stored at slot.
Analysis Case 1: Unsuccessful Search

- Element for which we are searching is *not* in list.
- Must check each element in the list.
- Uniform hashing \rightarrow average length of lists in $T = \alpha = n/m$.
- Expected number of elements examined $= \alpha$
- Running time: $\Theta(1 + \alpha)$.
Case 2: Successful Search

- Assume CHAINED-HASH-INSERT adds new elements to the end of the list.
- Expected number of elements examined is at most 1 more than number of elements examined when sought-for element was inserted.
- Running time: $\Theta(1 + \alpha)$.
Method 2: Open Addressing

- All elements stored in hash table (i.e., no lists used).
- Each table entry contains either element or NIL.
- When searching for an element, systematically probe table slots

\[h(k, 0), h(k, 1), h(k, 2) \ldots \]

until empty slot found, for

\[h : U \times \{0, 1, \ldots, m - 1\} \rightarrow \{0, 1, \ldots, m - 1\} \]
Two views of hashing

- “Knuthology”: hash function fixed, random key set
- Universal hashing: hash function \textit{random}, worst-case key set [Carter-Wegman’79]
Knuthology 101

Ideally:

• Distribute keys uniformly into slots.
• Regularity in key distribution should not affect uniformity of hashing!
Division method

• Use hash function

\[h(k) = k \mod m \]

• Must avoid certain values of \(m \)

 – Powers of 2. If \(m = 2^p \), \(h(k) \) is \(p \) lowest order bits of \(k \).

 – Powers of 10. If the keys are decimal numbers, hash function does not depend on all decimal digits of \(k \).

• Primes are usually good
Multiplication method

- Use hash function

\[h(k) = \lfloor m (k \cdot A \mod 1) \rfloor \]

where \(A \) is a constant, \(0 < A < 1 \).

- Value of \(m \) not critical; typically use \(m = 2^p \).

- Optimal choice of \(A \) depends on characteristics of data (Knuth says use \(A = \frac{\sqrt{5} - 1}{2} \))
Universal Hashing

• **Problem:** For any choice of hash function, there exists a bad set of identifiers—malicious adversary could force poor performance.

• **Solution:**

 – **RANDOMIZE!**

 – Choose hash function at random,
 \emph{independent} of keys!

 – To do this, create a \emph{set} of hash functions,
 \(\mathcal{H} \), from which \(h \) can be randomly selected!
Universal Hashing

- Let \mathcal{H} be a collection of functions mapping U to $\{0, 1, \ldots, m - 1\}$.
- **Definition:** \mathcal{H} is universal if for all $x, y \in U$ ($x \neq y$),
 $$\Pr_{h \in \mathcal{H}}[h(x) = h(y)] = \frac{1}{m}$$
Constructing a Universal Hash Function

One construction (CLRS, p. 251). Other constructions possible.

- Let m be prime
- Assume $x \in \{0 \ldots m^{r+1} - 1\}$
- Decompose key x into $r + 1$ digits, each with value $\{0, 1, \ldots, m - 1\}$, i.e.,
 \[x = < x_0, x_1, \ldots, x_r >, \text{ where } 0 \leq x_i < m \]
- Pick $a = < a_0, a_1, \ldots, a_r >$, each $a_i \in \{0 \ldots m - 1\}$
- For each a set
 \[h_a(x) = \sum_{i=0}^{r} a_i x_i \mod m \]

Deja-vu? Matrix product verification, via multiplication by random vector (PS2)
Universal Hashing Cont.

Theorem
\(\mathcal{H} \) is universal.

Proof

- Let \(x = \langle x_0, x_1, \ldots, x_r \rangle \) and \(y = \langle y_0, y_1, \ldots, y_r \rangle \) be distinct keys.
- \(x \) and \(y \) differ in at least one digit position.
- Without loss of generality, assume \(x_0 \neq y_0 \).
- Must show that probability that \(x, y \) collide is \(1/m \)
Universal Hashing Cont.

• Show that for any choice of \(a_1, a_2, \ldots, a_r\) there is exactly one choice of \(a_0\) such that \(h_a(x) = h_a(y)\). I.e., there is a unique solution for \(a_0\) modulo \(m\):

\[
h_a(x) = h_a(y) \\
\sum_{i=0}^{r} a_i x_i = \sum_{i=0}^{r} a_i y_i \pmod{m} \\
a_0(x_0 - y_0) = \sum_{i=1}^{r} a_i (y_i - x_i) \pmod{m} \\
a_0 = (x_0 - y_0)^{-1} \sum_{i=1}^{r} a_i (y_i - x_i) \pmod{m}
\]

• \(a_0\) is uniformly chosen from \(\{0 \ldots m - 1\}\)

• probability of collision is \(1/m\).
Universal Hashing

Theorem
If h is chosen randomly from \mathcal{H} and used to hash n keys into a table T of size m, the expected number of collisions involving any particular key x is less than $\alpha = n/m$.

Proof

- Let $C_x = \#$ of collisions of keys in T with x
- Let

$$c_{yz} = \begin{cases} 1 & \text{if } h(y) = h(z) \\ 0 & \text{otherwise} \end{cases}$$

$$C_x = \sum_{y \in T \setminus \{x\}} c_{xy}$$
Universal Hashing

A single pair collides with probability $\frac{1}{m}$;
That is, $E[c_{xy}] = 1/m$. Therefore,

$$E[C_x] = E \left[\sum_{y \in T - \{x\}} c_{xy} \right]$$
$$= \sum_{y \in T - \{x\}} E[c_{xy}]$$
$$= \sum_{y \in T - \{x\}} \frac{1}{m}$$
$$= \frac{n - 1}{m}$$

$< \alpha$

So, the expected number of collisions with x is $< \alpha$.
A bonus “war story”

Once upon a time, when I was a Ph.D. student at Stanford, we were clustering web pages:

- web page → text summary → set of words
- web pages similar if their word sets have large intersection
- we were hashing words

Problem: the home page of colleague’s advisor got clustered with:

- assorted pornography
- web pages on alcohol abuse

Problem II: our algorithm was provably correct, i.e., probability of failure was one in a million (we calculated it exactly).
What happened?

- x a word (really, word’s “signature”, but ignore that)
- We used hash function $h(x) = (ax \mod P) \mod 2^8$
 - $P = 2^{64} - 57$ (more or less)
 - a randomly chosen
- For various reasons, x divisible by 8 always (we were sampling 1 in 8 words)
- **Implementation bug:** forgot to use long long int \Rightarrow ax was computed modulo 2^{64} (rounding)
- mod P had almost always no effect, since $P \approx 2^{64}$
- x divisible by 8 \Rightarrow (ax) divisible by 8 \Rightarrow $(ax) \mod 2^8$ divisible by 8
- 3 lowest bits of $h(x)$ were almost always 0, so the *actual* range size was 2^5, not 2^8
- Enough for unexpected word collisions to occur...

Moral: do your hashing well, or you might never graduate.