Lecture 4: February 14, 2002

Today:

- *Randomized* algorithm for sorting: Quicksort
Randomized algorithms

- Can make decisions based on coin flips
- Helps to “fool” adversary
- This is \textit{not} average case!
More on randomized algorithms

- We can choose an element x uniformly at random from a specified range
- The time could be a random variable \Rightarrow need to bound
 - the expected time
 - the probability the time exceeds certain value
- The correctness could be a random variable as well (does not include homeworks)
Quicksort

Yet another sorting algorithm, but:

- Sorts “in place” (doesn’t require additional array)
 - like insertion sort
 - unlike merge sort
- Very practical (with tuning)
- $\Theta(n \log n)$ time with “high” probability
Merge sort

1. Divide: Partition array into 2 subarrays of equal size.
2. Conquer: Recursively sort subarrays.
3. Combine: Merge two sorted subarrays.
\[\Theta(n \lg n) \]
Quicksort

1. **Divide:** Partition array into 2 subarrays such that elements in lower part \(\leq \) elements in higher part.

| \(\leq x \) | \(\geq x \) |

2. **Conquer:** Recursively sort 2 subarrays.

3. **Combine:** Trivial (because in place).
Partition procedure

Partition \((A, p, r)\)

(Partition \(A[p..r]\) around random element \(x = A[k]\))

\(k \leftarrow \text{Random}(p \ldots r)\)

\(x \leftarrow A[k]\)

\(i \leftarrow p - 1\)

\(j \leftarrow r + 1\)

while TRUE **do**

repeat \(j \leftarrow j - 1\) **until** \(A[j] \leq x\)

repeat \(i \leftarrow i + 1\) **until** \(A[i] \geq x\)

if \(i < j\) **then** exchange \(A[i] \leftrightarrow A[j]\)

else quit (and return \(j\))
Correctness proof idea

Loop invariant:

<table>
<thead>
<tr>
<th></th>
<th>(\leq x)</th>
<th>?</th>
<th>(\geq x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(i)</td>
<td>(j)</td>
<td>(r)</td>
</tr>
</tbody>
</table>

Time = \(\Theta(n) \) for \(n \)-element subarray
Quicksort — Recursive algorithm

\[\text{QUICKSORT}(A, p, r)\]

\[\text{if } p < r \]

\[\text{then } q \leftarrow \text{PARTITION}(A, p, r)\]

\[\text{QUICKSORT}(A, p, q - 1)\]

\[\text{QUICKSORT}(A, q + 1, r)\]

Initial call: \[\text{QUICKSORT}(A, 1, length[A])\]
Quicksort analysis

- Correctness - done
- Running time ?
Analysis of Quicksort (best case)

If we’re lucky, Partition always splits array evenly

\[T(n) = 2T(n/2) + \Theta(n) \]

\[\lg n \]

\[n \]

\[n/2 \]

\[n/4 \]

\[n/8 \]

\[\Theta(n \lg n) \]
Analysis of \textbf{QUICKSORT} (OK case)

Suppose the split is $\frac{1}{10} : \frac{9}{10}$

\begin{align*}
T(n) &= T(n/10) + T(9n/10) + \Theta(n) \\
&= \Theta(n \lg n) \quad \text{Still lucky!}
\end{align*}
Analysis of Quicksort (worst case)

How might we be unlucky?

- one side of partition has 1 element

\[
T(n) = T(1) + T(n-1) + \Theta(n)
\]

\[
= T(n-1) + \Theta(n) \quad \text{because } T(1) = \Theta(1)
\]

\[
= \sum_{k=1}^{n} \Theta(k) = \Theta(\sum_{k=1}^{n} k)
\]

\[
= \Theta(n^2) \quad [\text{arithmetic series}]
\]
Analysis of Quicksort

- Optimistic case
- Semi-optimistic case
- Worst case
- ...
- Need more scientific approach
- Will show the time is at most $Cn \log n$ with high probability
Key ideas

- The running time bounded by $O(n)$ times the depth of the recursion tree (as seen on earlier pictures)
- “Nice splits” happen with “nice probability”
- If we have large enough number of trials, and each trial has “nice probability” of success, we have many successes with high probability
- For technical reasons, assume all input elements are distinct. Picking random index of element is equivalent to picking random element.
Lucky partitions

Let a_i be the i-th smallest element in $A[\cdot]$ (i.e., with the rank i).

Let D_i denote the depth of a_i in the recursion tree. The total tree depth is $D = \max_i D_i$.

We say a split (say, of $A[p \ldots r]$) is “lucky” for a_i, if the part where a_i ends up in is of size $\leq 3/4(r - p + 1)$, i.e., if we reduce the array size by a factor of $3/4$.

<table>
<thead>
<tr>
<th>a_i</th>
<th>x</th>
</tr>
</thead>
</table>

After $\log_{4/3} n$ lucky splits, a_i is a leaf!
“Lucky” lemma

Lemma: At any time, \(a_i \) is lucky with probability at least 1/2.

Proof: To get a lucky split, it is sufficient that \(x \) has rank in \(\{n/4 \ldots 3n/4\} \). This happens with probability \(\geq 1/2 \).
The analysis

Let \(l = C \log_{4/3} n \), where \(C \) is a “large” constant. What is the probability that \(D_i > l \)?

It is at most the probability that in \(l \) trials, each having success probability \(\geq 1/2 \), we were \textit{not} successful \(\geq l - \log_{4/3} n \) times.

The latter probability is \textit{at most}

\[
\binom{l}{l-t} \left(\frac{1}{2} \right)^{l-t}
\]

for \(t = \log_{4/3} n \).
The analysis ctd.

\[
\left(\binom{l}{l-t} \right)^{1/2} \leq \frac{e^l}{t} \leq \frac{\binom{e^l}{t}}{t^{1/2}} \leq \left(\frac{eC \log_4/3 n}{\log_4/3 n} \right)^t 1/2(C-1) \log_4/3 n = \left(\frac{eC}{2C-1} \right)^{\log_4/3 n}
\]

When \(C \) is large enough (e.g., 20), the probability is smaller than \(1/n^2 \).
Finishing the analysis

We proved that \(\Pr[D_i > l] \leq 1/n^2 \).

Therefore, the probability that there exists \(i \) such that \(D_i > l \) is at most

\[
\Pr[D_1 > l] + \Pr[D_2 > l] \ldots + \Pr[D_n > l] \leq n \cdot 1/n^2 = 1/n
\]

Therefore probability that \(\max_i D_i \leq l \) is at least

\(1 - 1/n \).
Appendix

Why is the probability that “in \(l \) trials, each having success probability \(\geq 1/2 \), we were not successful \(\geq l - t \) times” at most

\[
\left(\frac{l}{l - t} \right) \left(\frac{1}{2} \right)^{l-t}
\]

?

- if we were not successful \(\geq l - t \) times, we were not successful during some set of \(l - t \) trials
- the probability we were not successful during a fixed set of exactly \(l - t \) trials is at most \(1/2^{l-t} \)
- there are \(\binom{l}{l-t} \) subsets of trials of size \(l - t \)