Massachusetts Institute of Technology Handout 8
6.046J/18.410J: Introduction to Algorithms February 15, 2001
Professors Piotr Indyk and Madhu Sudan

Problem Set 1 Solutions
Problem 1-1. Ranking Functions by Order of Growth

The ranking is based on the following facts:
ecxponential functions grow faster than polynomial functions, which grow faster than
logarithmic functions;

ethe base of a logarithm does not matter asymptotically, but the base of an exponential
and the degree of a polynomial do matter.

oStirling’s approximation for n! is useful for dealing with factorials asymptotically.

The ranking is:

1 nlglgn
lg*n nien
lglgn (%)
{Inn, lgn®} e

{n, 2lenl oflenl 1 (n 1)
{nlgn, lg(n!) } n!

Ylen (2n)!
{n®, n*+n} 22"

Some notes:

. (%) " approaches zero.

on = 287 > ollen] > glan—1 _ o—lglan _ %n and so 218" = ©(n). Similarly, n < 2Me"l <
2n and so also 28" = ©(n).

Ign
°(\/§) T slen — iy — V1 and similarly 418" = 22len = p2,

1

olg(n!) ~ g (\/% (Z)n+2) =0O(nlgn).

lgn+y n)len n . n lgn
o(lgn)! ~ v2me (12)*" 72 = ar BEIVER Now notice that (Ign)” = (2&'")*" =

e nlge
g
2lglgnlgn — (2lg”) BT _ plalan Using this we get: (Ign)! ~ 2mn'e8n18¢, Ton. This
is asymptotically greater than any polynomial in n, since for any polynomial n¢, there

is some n for which lglgn — lge > d. However, it is strictly less than n'8'8™ since they

differ by \’}112_6 =w(l).




2 Handout 8: Problem Set 1 Solutions

Problem 1-2. Asymptotic Notation

(a) Sometimes true: For f(n) = n it is true, while for f(n) = 1/n it is not true. (The
statement is always true for f(n) = (1), and hence for most functions with which
we will be working in this course, and in particular all time and space complexity
functions).

(b) Sometimes true: For f(n) = 1 and g(n) = ||n * sin(n)|| it is true, while for any
f(n) =0(g(n)), eg. f(n)=g(n)=1, it is not true.
<

(c) Always true: max(f(n),g(n)) < f(n)+g(n) < 2max(f(n), g(n)).

(d) Always true: Consider f(n)+ g(n) where g(n) = o(f(n)) and let ¢ be a constant
such that g(n) < c¢f(n) for large enough n. Then f(n) < f(n)+g(n) < (1+c¢)f(n)
for large enough n.

(e) Never true: If f(n) = Q(g(n)) then there exists positive constant cq and ng
such that for all n > ngq, cg(n) < f(n). But if f(n) = o(g(n)), then for any
positive constant ¢, there exists n,(c) such that for all n > n,(c), f(n) < cg(n). If
f(n) =Q(g(n)) and f(n) = o(g(n)), we would have that for n > max(ng, n,(cq)) it
should be that f(n) < cqg(n) < f(n) which cannot be.

Problem 1-3. Insertion sort on small arrays in merge sort

(a) Insertion sort takes O(k?) time per k-element list. Therefore, sorting n/k such k-
element lists, takes O(k*n/k) = O(nk) time.

(b) Merging requires O(n) work at each level, since we are still working on n elements,
even if they are partitioned among sublists. The number of levels, starting with n/k
k-element lists and finishing with 1 n-element list, is [lg(n/k)]. Therefore, the total
running time for the merging is O(nlg(n/k)).

(c) The largest asymptotic value of k, for which the modified algorithm has the same
asymptotic running time as standard merge sort, is k& = O(lgn). The combined
running time is O(nlgn + nlgn — nlglgn), which is O(nlgn). For larger values of
k the term nk would be larger than O(nlgn).

(d) In practice, k should be chosen such that it minimizes the running time of the
combined algorithm, which is enk + dnlg(n/k), where ¢ and d are some positive
constants that determine the actual running time of the two phases. The value
k = d/c minimizes the above expression, and thus the best choice of k does not
depend on n, but rather on the ratio between the constants d and c.



Handout 8: Problem Set 1 Solutions

Problem 1-4. Recurrences

()

(b)

(d)

(e)

T(n) =4T(%) +n* = T(n) = O(n?)
Using the third case of the master theorem:

n® =Q (nlog24 + 0.1) = Q(n*')

Tn)=T(35)+T(3) +n=T(n)=06(n)
Indeed

n
2

so T'(n) = Q(n). Now let ¢ > 6 and suppose by induction that T'(k) < ck Yk < n
(the base case T'(1) =1 < ¢ is true). Now

T(n) =T(3) +T(3) +n2n

T(n)gcg—l—cg+n:(1+€)n§cn

given the assumption on ¢. So we have T'(n) = O(n) as well.

T(n) = 3T(n3) + logsn = T(n) = O(lgnlglgn)

Let n = 3% we have T(3%) = 37(3%) + k. Let S(k) = T(3%), S(1) = 1 and
S(k) = 35(%) + k so the second case of the master theorem (k = O(k'%33)) gives
S(k) = ©(klgk). Going back to n we get T'(n) = S(logyn) = O(logznlglogsn) =
O(lgnlglgn).

T(n)=T(n—1)+n*= T(n) = 0(n°)

By iteration T'(n) = Y% ,4*. Then use approximation by integrals (page 50 in
textbook).

T(n) =T(n/2+5)+n?> = T(n) = O(n?) It is reasonable to guess that T'(n) has
the same solution of S(n) = S(n/2) + n? as the difference between n/2 and n/2 +5
becomes negligible for n — oo. By case 3 of the Master Theorem, we have that
S(n) = 6(n?).

Thus we guess T'(n) = Q(n?) and we prove it by substitution. Assume that T'(m) >
em? for an appropriate constant ¢ and for all m < n. Then we have that

T(n) > c(n?*/4 + 5n + 25) +n*.

With simple algebraic manipulations we have ¢(n?/4 + 5n + 25) +n? > cn? is equiv-
alent to (1 —3/4c)n®+ ¢(5n + 25) > 0. Since c(5n + 25) is always positive, it will be
enough to find a value of ¢ for which (1 — 3/4c)n? is positive. Any ¢ < 4/3 makes
the inequality true (notice that it may be true also for some ¢ > 4/3). Hence we
have T'(n) = Q(n?).

Now, we guess T'(n) = O(n?) and we prove it by substitution. Assume that T'(m) <
am? for an appropriate constant a and for all m < n. Then

T(n) < a(n®/4 + 5n + 25) + n®.



Handout 8: Problem Set 1 Solutions

Thus T'(n) < an? whenever a(n?/4 + 5n + 25) + n? < an?, which is equivalent to
a(n?/4 + 5n + 25) < a(n? — 1). This inequality is true, given any value of a, for n
sufficiently large, e.g. for n > 100. Thus, we have proved that, for any constant a,
T(n) > an?, for n > 100. Hence T'(n) = O(n?).

Combining T'(n) = O(n?) and T'(n) = Q(n?), we get T((n) = O(n?).

(f) T(n) =2T(n/2) +nlgn = T(n) =nlg’n
Unfortunately, the Master Method cannot be used since the added value nlgn is
within a logarithmic factor of n'°¢2? = n. Instead, by iteration:

187

n n

T(n) = nlgn—l—legg +4

Ign Ign

= nZngk:nZk
k=0 k=0

nw — O(nlg?n)

(g) T(n) =4T(n/2) + n* +n = T(n) =n’lgn
This time its fine to use the second case of the Master Method, since n? + n =

O(n'e24) = O(n?).



