
Massachusetts Institute of Technology Handout 8
6.046J/18.410J: Introduction to Algorithms February 15, 2001
Professors Piotr Indyk and Madhu Sudan

Problem Set 1 Solutions

Problem 1-1. Ranking Functions by Order of Growth

The ranking is based on the following facts:

•exponential functions grow faster than polynomial functions, which grow faster than
logarithmic functions;

•the base of a logarithm does not matter asymptotically, but the base of an exponential
and the degree of a polynomial do matter.

•Stirling’s approximation for n! is useful for dealing with factorials asymptotically.

The ranking is:

(
2
3

)n
(lg n)!

1 nlg lgn

lg∗ n nlgn

lg lg n
(

3
2

)n
{ lnn , lg n2 } en(√

2
)lgn

22n

{ n , 2blgnc , 2dlgne } (n− 1)!
{ n lg n , lg(n!) } n!
4lgn (2n)!
{ n3 , n2 + n3 } 22n

Some notes:

•
(

2
3

)n
approaches zero.

•n = 2lgn ≥ 2blgnc ≥ 2lgn−1 = 2−12lgn = 1
2
n and so 2blgnc = Θ(n). Similarly, n ≤ 2dlgne ≤

2n and so also 2dlgne = Θ(n).

•
(√

2
)lgn

= 2
1
2

lgn = n
1
2 =
√
n and similarly 4lgn = 22 lgn = n2.

•lg(n!) ≈ lg
(√

2πe
(
n
e

)n+ 1
2

)
= Θ(n lg n).

•(lg n)! ≈
√

2πe
(

lgn
e

)lgn+ 1
2 =
√

2π
(lgn)lgn

√
lgn

nlg e . Now notice that (lg n)lgn =
(
2lg lgn

)lgn
=

2lg lgn lgn =
(
2lgn

)lg lgn
= nlg lgn. Using this we get: (lg n)! ≈

√
2πnlg lgn−lg e

√
lg n. This

is asymptotically greater than any polynomial in n, since for any polynomial nd, there
is some n for which lg lg n− lg e > d. However, it is strictly less than nlg lgn since they
differ by nlg e√

lgn
= ω(1).



2 Handout 8: Problem Set 1 Solutions

Problem 1-2. Asymptotic Notation

(a) Sometimes true: For f(n) = n it is true, while for f(n) = 1/n it is not true. (The
statement is always true for f(n) = Ω(1), and hence for most functions with which
we will be working in this course, and in particular all time and space complexity
functions).

(b) Sometimes true: For f(n) = 1 and g(n) = ‖n ∗ sin(n)‖ it is true, while for any
f(n) = O(g(n)), e.g. f(n) = g(n) = 1, it is not true.

(c) Always true: max(f(n), g(n)) ≤ f(n) + g(n) ≤ 2 max(f(n), g(n)).

(d) Always true: Consider f(n) + g(n) where g(n) = o(f(n)) and let c be a constant
such that g(n) < cf(n) for large enough n. Then f(n) ≤ f(n) + g(n) ≤ (1 + c)f(n)
for large enough n.

(e) Never true: If f(n) = Ω(g(n)) then there exists positive constant cΩ and nΩ

such that for all n > nΩ, cg(n) ≤ f(n). But if f(n) = o(g(n)), then for any
positive constant c, there exists no(c) such that for all n > no(c), f(n) < cg(n). If
f(n) = Ω(g(n)) and f(n) = o(g(n)), we would have that for n > max(nΩ, no(cΩ)) it
should be that f(n) < cΩg(n) ≤ f(n) which cannot be.

Problem 1-3. Insertion sort on small arrays in merge sort

(a) Insertion sort takes O(k2) time per k-element list. Therefore, sorting n/k such k-
element lists, takes O(k2n/k) = O(nk) time.

(b) Merging requires O(n) work at each level, since we are still working on n elements,
even if they are partitioned among sublists. The number of levels, starting with n/k
k-element lists and finishing with 1 n-element list, is dlg(n/k)e. Therefore, the total
running time for the merging is O(n lg(n/k)).

(c) The largest asymptotic value of k, for which the modified algorithm has the same
asymptotic running time as standard merge sort, is k = O(lg n). The combined
running time is O(n lg n+ n lg n− n lg lg n), which is O(n lg n). For larger values of
k the term nk would be larger than O(n lg n).

(d) In practice, k should be chosen such that it minimizes the running time of the
combined algorithm, which is cnk + dn lg(n/k), where c and d are some positive
constants that determine the actual running time of the two phases. The value
k = d/c minimizes the above expression, and thus the best choice of k does not
depend on n, but rather on the ratio between the constants d and c.



Handout 8: Problem Set 1 Solutions 3

Problem 1-4. Recurrences

(a) T (n) = 4T (n
2
) + n3 =⇒ T (n) = Θ(n3)

Using the third case of the master theorem:

n3 = Ω
(
nlog2 4 + 0.1

)
= Ω(n2.1)

(b) T (n) = T (n
2
) + T (n

3
) + n =⇒ T (n) = Θ(n)

Indeed
T (n) = T (

n

2
) + T (

n

3
) + n ≥ n

so T (n) = Ω(n). Now let c > 6 and suppose by induction that T (k) ≤ ck ∀k < n
(the base case T (1) = 1 < c is true). Now

T (n) ≤ c
n

2
+ c

n

3
+ n = (1 +

5c

6
)n ≤ cn

given the assumption on c. So we have T (n) = O(n) as well.

(c) T (n) = 3T (n
1
3 ) + log3 n =⇒ T (n) = Θ(lg n lg lg n)

Let n = 3k we have T (3k) = 3T (3
k
3 ) + k. Let S(k) = T (3k), S(1) = 1 and

S(k) = 3S(k
3
) + k so the second case of the master theorem (k = Θ(klog3 3)) gives

S(k) = Θ(k lg k). Going back to n we get T (n) = S(log3 n) = Θ(log3 n lg log3 n) =
Θ(lg n lg lg n).

(d) T (n) = T (n− 1) + n4 =⇒ T (n) = Θ(n5)
By iteration T (n) =

∑n
i=1 i

4. Then use approximation by integrals (page 50 in
textbook).

(e) T (n) = T (n/2 + 5) + n2 =⇒ T (n) = Θ(n2) It is reasonable to guess that T (n) has
the same solution of S(n) = S(n/2) + n2 as the difference between n/2 and n/2 + 5
becomes negligible for n → ∞. By case 3 of the Master Theorem, we have that
S(n) = Θ(n2).

Thus we guess T (n) = Ω(n2) and we prove it by substitution. Assume that T (m) ≥
cm2 for an appropriate constant c and for all m < n. Then we have that

T (n) ≥ c(n2/4 + 5n+ 25) + n2.

With simple algebraic manipulations we have c(n2/4 + 5n+ 25) +n2 ≥ cn2 is equiv-
alent to (1− 3/4c)n2 + c(5n+ 25) ≥ 0. Since c(5n+ 25) is always positive, it will be
enough to find a value of c for which (1 − 3/4c)n2 is positive. Any c < 4/3 makes
the inequality true (notice that it may be true also for some c > 4/3). Hence we
have T (n) = Ω(n2).

Now, we guess T (n) = O(n2) and we prove it by substitution. Assume that T (m) ≤
am2 for an appropriate constant a and for all m < n. Then

T (n) ≤ a(n2/4 + 5n+ 25) + n2.



4 Handout 8: Problem Set 1 Solutions

Thus T (n) ≤ an2 whenever a(n2/4 + 5n + 25) + n2 ≤ an2, which is equivalent to
a(n2/4 + 5n + 25) ≤ a(n2 − 1). This inequality is true, given any value of a, for n
sufficiently large, e.g. for n ≥ 100. Thus, we have proved that, for any constant a,
T (n) ≥ an2, for n ≥ 100. Hence T (n) = O(n2).

Combining T (n) = O(n2) and T (n) = Ω(n2), we get T (n) = Θ(n2).

(f) T (n) = 2T (n/2) + n lg n =⇒ T (n) = n lg2 n
Unfortunately, the Master Method cannot be used since the added value n lg n is
within a logarithmic factor of nlog2 2 = n. Instead, by iteration:

T (n) = n lg n+ 2
n

2
lg
n

2
+ 4

n

4
lg
n

4
+ · · ·

= n
(

lg n+ lg
n

2
+ lg

n

4
+ · · ·

)

= n
lgn∑
k=0

lg 2k = n
lgn∑
k=0

k

= n
lg n(lg n+ 1)

2
= Θ(n lg2 n)

(g) T (n) = 4T (n/2) + n2 + n =⇒ T (n) = n2 lg n
This time its fine to use the second case of the Master Method, since n2 + n =
Θ(nlog2 4) = Θ(n2).


