Problem Set 4.5

This problem set is for practice purposes and will not be collected.

Reading: Chapters 13, 15, 18, 19 of CLR.

Problem 4.5-1. Assessing the damage

It’s hurricane season, and the local news station is trying to keep track of the damage on the beach for local property owners. They start with a list of local houses, each with a distance from the shore. They commission you to design a data structure to support the following operations:

- **DECREASE-VALUE(distance, amount):** Decrease the value of every property within `distance` of shore by `amount`.
- **ASSESS-DAMAGE(distance):** Report the total damage to a property `distance` feet from shore.

The idea is that each time a bad wave hits, reaching some distance inland, the station will call `DECREASE-VALUE`, and the homeowners (who are somewhere safe, not at home) can call `ASSESS-DAMAGE` to see how their house is doing. Show how to implement both of these operations in $O(\log n)$ time, where n is the number of houses.

Problem 4.5-2. Random TREAPs

Suppose that we have a set of keys that we want to store in a binary search tree. Of course we’d like the search tree to stay balanced, so that we can search in $O(\log n)$ time. One way to try to keep the tree balanced is the following randomized scheme: assign every key a random score, a number in $[0,1]$. Use a binary search tree on the keys that has a heap-order on the scores. (I.e. if you only look at the keys of the resulting data structure, what you see is a binary search tree. If you only look at the scores, what you see is a heap.) This structure is called a TREP, because it is both a tree and a heap. In figure ?? there is a small example with keys a, b, c, d and associated scores $0.4, 0.8, 0.1, 0.7$:

(a) Describe how to implement a TREAP-insert operation.

(b) Prove that for distinct keys there is a unique binary search tree on the keys that has a heap order on the scores. (Observe that you may also assume that the scores are distinct, because with probability 1 they are.)

(c) Argue that regardless of insertion order, a TREP has expected height $O(\log n)$. (Hint: relate a TREP to a randomly built binary search tree)
Problem 4.5-3. **Stacking the Deque**

Consider a data structure that supports the following operations:

- **Push**(x)—adds item x to the front of the data structure.
- **Pop**()—removes the item at the front of the structure and returns it.
- **Inject**(x)—adds item x to the back of the data structure.
- **Eject**()—removes the item at the back of the structure and returns it.
- **Find-Min**()—returns the minimum item in the data structure.

If we restrict our operations to **Push** and **Pop** only, the data structure is called a *stack*. If we restrict our operations to **Inject** and **Pop** only, the data structure is called a *queue*. (For further discussion, see CLR pages 200–202.) Of course, by symmetry, restricting to **Inject** and **Eject** again results in a stack, and restricting to **Push** and **Eject** again results in a queue. We call a double-ended queue, or **deque** (pronounced “deck”) the hybrid data structure that supports *all four* of these operations. When a deque also supports the **Find-Min** operation, we call it a **min-deque**.

(a) Describe an efficient implementation of a min-stack—that is, a data structure that supports **Push**, **Pop**, and **Find-Min** in $O(1)$ worst-case time per operation.

(b) Describe an efficient implementation of a min-deque—that is, a data structure that supports all five operations in $O(1)$ *amortized* time per operation. (Hint: make a deque out of two stacks.)

Problem 4.5-4. **Quick Array Inserts**

You have an application which wants to maintain a sorted array of numbers, but is receiving new ones frequently. You decide that instead of inserting each one as it arrives, you will keep a sorted array and an unsorted list of extra items, and every once in a while you will
combine the two to create a new sorted array and an empty list. Your data structure keeps
two extra values, the size \(n \) of the array and the length \(m \) of the list. Insert looks like this:

\[
\text{INSERT}(A, l, x) \\
l \leftarrow \text{CONS}(x, l) \\
m \leftarrow m + 1 \\
\textbf{if } m \geq \log n \\
B \leftarrow \text{SORT}(l) \\
A \leftarrow \text{MERGE}(A, B) \\
n \leftarrow n + m; m \leftarrow 0
\]

Here \text{SORT} is some \(O(n \log n) \) sort which takes a list and returns an array.

(a) What is the amortized running time of \text{INSERT}? (Hint: if \(A \) has size \(n \), what is the
total time required for the next \(\log n \) calls to \text{INSERT}?)

(b) Suppose you implement search by first doing a binary search on \(A \), and if that fails,
then doing a linear search on \(l \). What is the worst case running time of a search?

Problem 4.5-5. Deletion in B-trees

In this problem, we work with B-trees which are covered in chapter 19 of the textbook. The
definition of a B-tree is given on page 385 of the textbook. We demonstrate how the
\text{BTREE-DELETE} operation can be implemented. The \text{BTREE-DELETE} procedure is called
with a key \(k \) to be deleted and the root \(T \) of the B-tree.

In order to delete the key \(k \) from the B-tree \(T \), we first have to find \(k \) in \(T \). We would like
the key \(k \) to be in a leaf, since it makes the deletion procedure easier.

(a) If the key \(k \) is found in an internal node, describe how to modify the B-tree, such
that key \(k \) is transferred to a leaf.

We next describe a series of possible cases and investigate what to do in each case.

(b) Describe what can be done if \(k \) is in the root \(T \) of the B-tree.
(c) Describe what can be done if \(k \) is in a node \(x \) with at least \(t \) keys.
(d) Describe what can be done if \(k \) is in a node \(x \) that has exactly \(t - 1 \) keys, but either
\(x \)'s left sibling or \(x \)'s right sibling has at least \(t \) keys. (Hint: Rotate somehow.)
(e) Describe what can be done if \(k \) is in a node \(x \) that has exactly \(t - 1 \) keys, and none
of \(x \)'s siblings has more than \(t - 1 \) keys either. (Hint: Merge \(x \) with its sibling and
some key from the parent node. Then recursively delete the key from the parent.)