Today’s Lecture: Graph Algorithms

- Depth-first search
- Topological sort
- Strongly connected components

Graph Searching Algorithms

- Systematic search of every edge and vertex of graph
- Graph $G = (V, E)$ is either directed or undirected
- Today’s algs assume adjacency list representation

Examples:

- Depth-first search (DFS)
- Breadth-first search (BFS)

Applications:

- Compilers
- Graphics
- Maze-solving

DFS: Pseudocode

- input graph G may be undirected or directed.
- $time$ is global variable used for time-stamping.

DFS(G)

1 for each vertex $u \in V[G]$
2 do $color[u] \leftarrow$ WHITE
3 time $\leftarrow 0$
4 for each vertex $u \in V[G]$
5 do if $color[u] =$ WHITE
6 then DFS-Visit(u)

DFS-Visit(u)

1 $color[u] \leftarrow$ GRAY \triangleright White vertex u discovered.
2 $d[u] \leftarrow$ time \triangleright Mark with discovery time.
3 $time \leftarrow time + 1$ \triangleright Tick.
4 for each $v \in Adj[u]$
5 do if $color[v] =$ WHITE
6 then DFS-Visit(v)
7 $color[u] \leftarrow$ BLACK \triangleright Blacken u; it is finished.
8 $f[u] \leftarrow$ time \triangleright Mark with finishing time.
9 $time \leftarrow time + 1$ \triangleright Tick.

DFS: How it works

- Initialize all vertices to white
- Reset global counter
- Check each vertex; visit each WHITE vertex using DFS-Visit
- Each call to DFS-Visit(u) roots a new tree of depth-first forest at vertex v
- Vertex is GRAY if it has been discovered, but not all its edges have been explored!
- GRAY edges always form a linear chain!
- Vertex is BLACK after all its edges are explored
- When DFS returns, every vertex u assigned:
 a discovery time $d[u]$, and
 a finishing time $f[u]$
DFS: Running time

Running time $O(V^2)$, because
DFS-Visit called once per vertex
Each loop over Adj runs $< |V|$ times.
But... can we show a better bound?

DFS: running time

- **Amortized bookkeeping:** charge exploration of edge to the edge:
 Charge DFS-Visit loop body to edge (runs once per edge if directed graph, twice if undirected)
 Charge rest of DFS-Visit to vertex (runs once per vertex)

- Time = $O(V + E)$ – linear time

$O(V + E)$ is considered linear time for graph because it is linear in size of adjacency-list representation!

DFS Example

![DFS Example Diagram](image)

- = white
 = gray
 = black
DFS Timestamping

The procedure DFS records:

- discovery time of vertex u in $d[u]$
- finishing time of vertex u in $f[u]$

For every vertex u,

$d[u] < f[u]$.

DFS: Structure of colored vertices

Vertex u is:

- WHITE before time $d[u]$
- GRAY between time $d[u]$ and time $f[u]$
- BLACK thereafter.

Also notice structure throughout algorithm:

- GRAY vertices form a linear chain.
 - stack of recursive calls
 (things started but not yet finished)

DFS: parenthesis theorem

Discovery, finish times have parenthesis structure.

- represent discovery of u with left parenthesis “$(u”"
- represent finishing u by right parenthesis “$u)$”
- history of discoveries and finishings makes a well-formed expression! (Parentheses are properly nested.)

Proof in CLR (omitted here); intuition:

Intervals either disjoint or enclosed, but never (otherwise) overlap
We’ll just look at example.

DFS and Parenthesization
Edge Classification

Tree edge: (GRAY to WHITE)
- encounter new (WHITE) vertex
- Form spanning forest (no cycles)

Back edge: (GRAY to GRAY)
- from descendant to ancestor

Forward edge: (GRAY to BLACK)
- nontree, from ancestor to descendant

Cross edge: (GRAY to BLACK)
- remainder — between trees or subtrees
 - (if same tree, can’t go anc-desc, or desc/anc)

DFS: edge classification

Notes:
- ancestor-descendant is with respect to **tree** edges
- **tree** and **back** edges are important;
- most algorithms don’t distinguish between **forward** and **cross** edges

Exercise:
- How to distinguish forward, cross edges in DFS? (Hint: look at discovery times.)

DFS: Lemma

Lemma: (Theorem 23.9)

In a depth-first search of an undirected graph G, every edge of G is either a **tree** edge or a **back** edge.

Sketch of proof:

![Sketch of proof](image)

> Suppose there’s a forward edge F? (at left)
But F edge must actually be B because must finish processing bottom vertex before resuming with top vertex.

DFS: Lemma

Lemma: (Theorem 23.9)

Proof:

![Proof](image)
DFS: Lemma

Lemma: (Theorem 23.9)

Proof:

![Diagram of DFS traversal]

> Suppose there’s a cross edge C' between subtrees (at right)

C' edge can’t be Cross edge:

Must be explored from vertex it connects, becoming T, before other vertex is explored; so, two bottom T labels can’t both be right — one must be a B.

Exercise

Can use DFS to find cycles!

An undirected graph is acyclic (i.e., a forest) iff a DFS yields no back edges.

- Acyclic \Rightarrow no back edge:

 trivial (back edge \Rightarrow cycle)

- No back edges \Rightarrow acyclic:

 No back edges \Rightarrow only tree edges (by above lemma)

 \Rightarrow forest \Rightarrow acyclic

Directed Acyclic Graphs (DAG)

- No *directed* cycles

 example:

 ![DAG example diagram]

 - Used in many applications to indicate precedences among events

 - Example: parallel code execution

 - Topological Sort (induce a total ordering)
DAG: Theorem

Theorem: A directed graph G is acyclic
iff a DFS yields no back edges.
\[\Rightarrow:\] back edge \Rightarrow cycle
\[\Leftarrow:\] Contrapositive: cycle \Rightarrow back edge

Suppose G has a cycle. Let v have lowest discovery \# on cycle, and let u be predecessor on cycle.
\[
\begin{align*}
 u & \rightarrow v \\
 & \cdots \\
(v \text{ is first vertex visited})
\end{align*}
\]

When v discovered, whole cycle is WHITE.
Must visit everything reachable on a WHITE path from v before returning from DFS-\textsc{Visit}(v).
Thus (u, v) is a back edge. \(\square\)

- $O(V + E)$ time [Why not $O(v)$ as before?]

Topological Sort: pseudocode

The following algorithm topologically sorts a DAG:

\textsc{Topological-Sort}(G)
1 call DFS(G) to compute finishing times $f[v]$ for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 \textbf{return} the linked list of vertices

At end, linked list comprises total ordering!

Topological Sort

\textbf{Topological Sort} of a dag $G = (V, E)$ is:
- Linear ordering of all vertices of a dag
 such that
- If G contains an edge (u, v), then u appears before v in the ordering.

If the graph has a cycle, then no linear ordering is possible!

Topological Sort: Example

Example: precedence relations (don x before y)
Intuition: Can “schedule” task only when all of its subtasks have been scheduled

\[\begin{align*}
 & 11/16 \\ & 12/15 \\
\end{align*}\]

(a)

\[\begin{align*}
 & 17/18 \\
\end{align*}\]

(b)
Topological Sort: running time

Running Time:

• depth-first search: takes \(O(V + E) \) time
• insert each of the \(|V| \) vertices onto the front of the linked list: takes \(O(1) \)

We can perform a topological sort in time \(O(V + E) \).

Topological Sort: correctness

Correctness proof for \(\text{TOPOLOGICAL-SORT}(G) \)

Claim: \((u, v) \in E \Rightarrow f[u] > f[v] \)

When \((u, v) \) explored, \(u \) is GRAY
\[v = \text{GRAY} \]
\[\Rightarrow (u, v) = \text{backedge} \ (\text{cycle, contradiction}). \]

\[v = \text{WHITE} \]
\[\Rightarrow v \text{ becomes descendant of} \ u \]
\[\Rightarrow f[v] < f[u] \]

\[v = \text{BLACK} \]
\[\Rightarrow f[v] < f[u] \]

Strongly Connected Components (SCC)

Definition:

A strongly connected component of a directed graph \(G = (V, E) \) is:

a maximal set of vertices \(U \subseteq V \) such that for every pair of vertices \(u \) and \(v \) in \(U \), we have both

• \(u \leadsto v \)
 and
• \(v \leadsto u \)

That is, \(u \) and \(v \) are reachable from each other!

Strongly Connected Components

in other words . . .

• \(u \text{ R} v \) if \(u \) and \(v \) lie on a common cycle.
• \(\text{R} \) is an equivalence relation \((r,s,t) \).
• strongly connected components are a partition of graph \(G \) under \(\text{R} \).
SCC: examples

(a)

(b)

(c)

SCC: Pseudocode

(CLR §23.5)

To compute SCC of directed graph $G = (V, E)$, use two DFS's, one on G and one on G^T (G, with edges swapped):

STRONGLY-CONNECTED-COMPONENTS(G)
1. call DFS(G) to compute finishing times $f[u]$ for each vertex u
2. compute G^T
3. call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing $f[u]$ (as computed in line 1)
4. output vertices of each tree in the depth-first forest of step 3 as a separate SCC

Intuition: explore latest-finished vertices first

Running time $\Theta(V + E)$ [Why?]

- Strongly-Connected-Components can be found in linear time.