Lecture 11: March 20, 2001

Admin:

- Quiz 1 Stats
 - Mean 40.4, Std. Dev. 14.4 (Total = 80).
 - Problem 3 “too hard”. Effective total = 56.
- Lots of handouts go online today/tomorrow.
 - Lecture notes
 - Practice Problem Set + Soln. (attempt to solve before recitation Friday).

Today:

- Deletion in 2-3 Trees
- Red-Black Trees vs. 2-3 Trees
- Augmenting Data Structures:
 - Dynamic Order Statistics
 - Interval Trees

Recall 2-3 Trees

- Every internal node has 2 or 3 children.
- All leaves at same level.
- All data at leaves (sorted).
- Internal node stores max. key in subtree.

From Last lecture

- Depth of 2-3 tree storing \(n \) keys \(O(\log n) \).
- How to Search and Insert in \(O(\log n) \) time.
- Today: How to delete in \(O(\log n) \) time per operation.
Basic Idea

- Similar to Insert.
- First, delete the leaf.
- May result in a **defective** internal node:
 - I.e., Internal node with only one child.
- Idea to fix defective node v:
 - If Parent(v) has enough grandchildren, can fix the problem at that level.
 - Else, move the defect upwards.
 - Will eventually stop at root level.
- Also fix max value along root-leaf path.
Deletion Details

- When can fix be finished at Parent(v)?
 - If Parent(v) has 4 or more grandchildren ... then can fix it! (In some big, but $O(1)$, time).
- So what to do if Parent(v) has 3 grandchildren only?
 - Make all three children of v.
 - Now Parent(v) is defective.
- Note defect is moving up. If root becomes defective, just throw it away!

Pros & Cons

- 2-3 Trees conceptually simple. All ideas natural.
- Actual implementation/code is hard. Too many cases of the form "If node has three children, then"
- Sometimes, we just like binary trees!
- Can we convert a 2-3 tree into a binary one?
- Yes

Red Black Trees

- (Somewhat) balanced binary search trees.
- Every node colored Red/Black.
- Every internal node has two children.
- No Red parent with Red child.
- Every root-leaf path has same number of Black nodes.
- Keys stored in leaves. Leaves are sorted. Internal nodes store Max.
- (In some texts data stored at internal nodes.)

2-3 Trees to Red Black Trees

- Can easily implement 2-3 trees + algorithms on 2-3 trees via Red-Black trees.
- Main idea: convert each node of 2-3 tree into a Red-Black subtree (subgraph?).

- Fact: Red-Black trees with n leaves have depth $O(\log n)$
Augmenting Data Structures

Start “design” phase of course:

- So far, we have used one design technique: *divide and conquer*.
- Today, we look at the technique of *augmenting data structures*.

Dynamic Order Statistics

Want to support ordinary dynamic set operations *plus*:

- **OS-SELECT**(\(x, i\)) — returns *ith* smallest key in subtree rooted at \(x\)
- **OS-RANK**(\(T, x\)) — returns rank (position) of \(x\) in linear order of tree \(T\)

Idea: Keep subtree sizes in nodes of a 2-3 tree.
Dynamic Order Statistics: OS-Select

- **OS-SELECT** — Retrieve an element with specified rank
- Pseudocode: (Assume for simplicity all nodes have 2 children - saves messy pseudocode)

\[\text{OS-SELECT}(x, i) \]
1. \(r \leftarrow \text{size}[\text{left}[x]] + 1 \)
2. if \(i = r \)
3. then return \(x \)
4. else if \(i < r \)
5. then return \(\text{OS-SELECT}(\text{left}[x], i) \)
6. else return \(\text{OS-SELECT}(\text{right}[x], i - r) \)

- Idea: Knowing the size of the left subtree tells you in which subtree the sought key must lie.

Example:

Find \(\text{OS-SELECT}(\text{root}, 5) \) on the sample tree.

Dynamic Order Statistics: OS-Rank

- **OS-RANK** — Given a pointer to an element, determine its rank in linear order
- Pseudocode in CLR (§15.1, p. 283)
- Runs in \(O(\lg n) \) time.

Dynamic Order Statistics: Subtree Structure

Maintaining subtree sizes:

- Can data structure be maintained during tree-modifying operations (INSERT, DELETE)?
Dynamic Order Statistics: Subtree Structure

Maintaining subtree sizes:

- Update subtree sizes when inserting/deleting.
- `INSERT`, `DELETE` still $O(\log n)$ time.

Augmenting Data Structures: Methodology

Methodology:
(with “e.g.” for our order-statistic trees)

1. Choose underlying data structure
e.g. 2-3 trees

2. Determine additional information to maintain
e.g. subtree sizes

3. Verify that the information can be maintained for
all operations that modify the data structure
(e.g. `INSERT`, `DELETE` — don’t forget rotations!)

4. Develop new operations
e.g. `OS-RANK`, `OS-SELECT`

Order of steps may vary and be intermixed
in real design.

Augmenting Data Structures: Interval Trees

Interval Trees:

The problem:

- Maintain a set of intervals (e.g., time intervals).
- Query: Find an interval in the set that overlaps a
given query point.

Interval Trees: Example

Intervals: [4, 8], [5, 11], [7, 19], [15, 18], [17, 19], [21, 23]

Queries:

Query point 22: answer [21, 23].
Query point 9: answer [5, 11] or [7, 19].
Query point 20: answer NONE.
Augmenting Data Structures: Methodology

Interval Trees:

Following the methodology:

Underlying data structure

2-3 tree containing intervals:

- Leaves store pairs of integers:
 - `high` and `low` endpoint.
- Are keyed on `low` (left) endpoint

```
21 (23)
   /   /
  5 (11) 15 (19)
   /   /     /
  [4,8] [5,11] [7,19] [15,18] [17,19] [21,23]
```

- Warning! Must check that additional info can be maintained during updates. (Not a problem in this case.)

Augmenting Data Structures: Methodology

Correctness

Claim: If $q \leq \text{Max-right-endpt(leftsubtree)}$, and an overlapping interval exists in tree, then one exists in left subtree.

Proof:

- Let $[a, b]$ be overlapping interval and say it is in right subtree. Then $a \leq q \leq b$. If $[a, b]$ is in left subtree then we are done. So assume $[a, b]$ is in right subtree.
- Let b' be Max-right-endpt(left subtree). Let $[a', b']$ be the interval in the left subtree which has b' as the right endpt.
- Then $a' \leq a$ (since tree is keyed on left endpts), and thus $a' \leq q$.
- Also $b' \geq q$ (given by hypothesis of Claim).
- Thus $a' \leq q \leq b'$, and thus the interval $[a', b']$ is an interval in the left subtree that overlaps q, as required.

Develop new operations

Interval-Search

(to find an interval overlapping a given point)

Basic idea:

- If `(Max-right-endpt(leftchild)) < query pt.` search in right subtree, else search in left subtree.
- If at leaf, report interval if it overlaps query.

Correctness:

- Clearly doing the right thing in the true case of the if condition.
- Why is it ok to ignore the right subtree, if Max-right-endpt(leftchild) \geq query pt.?
- Exercise!