Today:
• Hash Tables
• Collision Resolution
• Choice of Hash Function
• Universal Hashing

Symbol Table Problem

• Maintain a dynamic set, \(T \).
• Support dictionary operations:
 - \(\text{INSERT}(T, x) \)
 - \(\text{SEARCH}(T, k) \)
 - \(\text{DELETE}(T, x) \)

where \(x \) consists of key and satellite data.

\[
\begin{array}{c}
\text{key}[x] \\
X \rightarrow \\
\text{Satellite} \\
\text{Data}
\end{array}
\]

• Examples:
 - Dictionary (word key to definition)
 - Compiler (symbol key to semantic data)

Direct-Address Table

• Idea:
 - Universe of keys is \(U = \{0, 1, \ldots, m - 1\} \).
 - \(K \) = set of keys in use.
 - Define a direct-access table, \(T[0..m - 1] \), where

\[
T[i] = \begin{cases}
 x & \text{if } i \in K \text{ and } \text{key}[x] = i, \\
 \text{NIL otherwise}.
\end{cases}
\]

Direct-Address Table Dictionary Operations

\[
\begin{align*}
\text{DIRECT-ADDRESS-SEARCH}(T, k) & \quad \text{return } T[k] \\
\text{DIRECT-ADDRESS-INSERT}(T, x) & \quad T[\text{key}[x]] \leftarrow x \\
\text{DIRECT-ADDRESS-DELETE}(T, x) & \quad T[\text{key}[x]] \leftarrow \text{NIL}
\end{align*}
\]

• Only \(O(1) \) time required for each operation.
Direct-Address Table: Problems

- Range of keys usually large (e.g. ASCII strings).
- Space required for T may be impractical.
- $|K|$ usually much smaller than $|U|$, so...

Wasteful to allocate space for every key in U.

Hash Tables

- Solution:
 - Use hash function h to map U into smaller set, $\{0, 1, \ldots, m - 1\}$.

 \[
 h : U \rightarrow \{0, 1, \ldots, m - 1\}
 \]
 - Can create hash table, T, where

 \[
 T[i] = \begin{cases}
 x & \text{if } key[x] \in K \text{ and } h(key[x]) = i, \\
 \text{NIL} & \text{otherwise.}
 \end{cases}
 \]

Hash Tables

Collisions

- If some element already occupies slot to which an inserted element is mapped, a collision occurs.

\[
T
\]

\[
K
\]

\[
T
\]

\[
K
\]

\[
T
\]

COLLISION

- Must detect and resolve collisions! (2 ways)
First method: Chaining

- Each position in hash table is pointer to head of a linked list.
- To insert elements into the table, add to head of list.

\[
h(9) = h(52) = h(36) = i
\]

Chaining Functions

- Insertion
 \[
 \text{CHAINED-HASH-INSERT}(T, x) \\
 \text{insert } x \text{ at the head of list } T[h(key[x])] \\
 \text{Worst-case running time } O(1).
 \]
- Searching
 \[
 \text{CHAINED-HASH-SEARCH}(T, k) \\
 \text{search for an element with key } k \text{ in list } T[h(k)] \\
 \text{Worst-case running time proportional to length of list } T[h(k)] \text{ (i.e., } \Theta(n)).
 \]
- Deletion
 \[
 \text{CHAINED-HASH-DELETE}(T, x) \\
 \text{delete } x \text{ from the list } T[h(key[x])] \\
 \text{Worst-case running time } O(1) \text{ if doubly-linked lists used.}
 \]

Analysis of Hashing with Chaining

- Assume each key equally likely to be hashed into any slot (simple uniform hashing)
- Given hash table \(T \) with \(m \) slots holding \(n \) elements, define \(T \)'s load factor \(\alpha \) as \(n/m \) (what is \(\alpha \)?)
- Time for computing \(h(k) \) is \(\Theta(1) \).
- To find an element,
 - Look up its position in the table using \(h \).
 - Search for element in linked list stored at slot.

Analysis Case 1: Unsuccessful Search

- Element for which we are searching is not in list.
- Must check each element in the list.
- Uniform hashing \(\rightarrow \) average length of lists in \(T = \alpha = n/m \).
- Expected number of elements examined = \(\alpha \)
- Running time: \(\Theta(1 + \alpha) \).
Case 2: Successful Search

- Assume CHAINED-HASH-INSERT adds new elements to the end of the list.
- Expected number of elements examined is at most 1 more than number of elements examined when sought-for element was inserted.
- Running time: $\Theta(1 + \alpha)$.

Method 2: Open Addressing

- All elements stored in hash table (i.e., no lists used).
- Each table entry contains either element or NIL.
- When searching for an element, systematically probe table slots.
- Hash function, h, determines the sequence of slots examined for a given key.

$$h : U \times \{0, 1, \ldots, m - 1\} \to \{0, 1, \ldots, m - 1\}$$

- Probe sequence for a given key k given by:

$$\langle h(k, 0), h(k, 1), \ldots, h(k, m - 1) \rangle$$

Open Addressing Insertion

- To insert element with key k into T, check each position in the table in the order specified by h until empty slot is found.

Open Addressing Searching

- Same as insertion.

HASH-SEARCH(T, k)

```plaintext
1 i ← 0
2 repeat $j ← h(k, i)$
3 \hspace{1cm} if $T[j] = \text{NIL}$
4 \hspace{1.5cm} then $T[j] ← k$
5 \hspace{1.5cm} return $j$
6 \hspace{1cm} else $i ← i + 1$
7 until $i = m$
8 error "hash table overflow"
```

- What is drawback of open addressing?
Further Analysis of Open Addressing

- Assume **uniform hashing**.
- Expected number of probes in *unsuccessful* search on an open-address hash table with load factor $\alpha = n/m < 1$ is $\leq 1/(1 - \alpha)$.
- Expected number of probes in *successful* search is $\leq \frac{1}{\alpha} \ln \frac{1}{1 - \alpha} + \frac{1}{\alpha}$
- Details in book (pp. 237–239).
- Example: hash table $\frac{1}{2}$ full
 - Unsuccessful: $\frac{1}{1 - \frac{1}{2}} = 2$
 - Successful: $\frac{1}{2} \ln \frac{1}{1 - \frac{1}{2}} + \frac{1}{2} \leq 3.387$
- Example: hash table $\frac{9}{10}$ full
 - Unsuccessful: $\frac{1}{1 - \frac{9}{10}} = 10$
 - Successful: $\frac{1}{10} \ln \frac{1}{1 - \frac{9}{10}} + \frac{1}{10} \leq 3.670$

Division method

- Use hash function
 $$h(k) = k \mod m$$
- Must avoid certain values of m
 - Powers of 2. If $m = 2^p$, $h(k)$ is p lowest order bits of k.
 - Powers of 10. If the keys are decimal numbers, hash function does not depend on all decimal digits of k.
- **Good choices for m are primes not too close to exact powers of 2**

Multiplication method

- Use hash function
 $$h(k) = \lfloor m (kA \mod 1) \rfloor$$
 where A is a constant, $0 < A < 1$.
- Value of m not critical; typically use $m = 2^p$.
- Optimal choice of A depends on characteristics of data (Knuth says use $A = \sqrt[5]{\frac{5}{2} - 1}$)

Choice of Hash Function

Ideally:

- Distribute keys uniformly into slots.
- Let $P(k) = \text{probability that key } k \text{ is drawn from } U$:
 $$\sum_{k : h(k) = j} P(k) = \frac{1}{m} \quad \text{for } j = 0, 1, \ldots, m - 1$$
 I.e., “sum over all keys k which hash to slot j”
- Regularity in key distribution should not affect uniformity of hashing!
Multiplication Hashing

- **Example**
 - keys are 7-bit binary, $0 \leq k < 128$
 - $m = 8 = 2^3$
 - $A = .1011001$
 - $k = 1101011$

\[
\begin{array}{c|c}
 \text{1 0 1 1 0 0 1} & A \\
 \text{1 1 0 1 0 1 1} & k \\
\end{array}
\]
\[
\frac{1 0 0 1 0 1 0 \cdot \text{0 1 1 0 0 1} \cdot kA}{h(k)}
\]

Universal Hashing

- **Definition:** \mathcal{H} is universal if for all $x, y \in U$ ($x \neq y$),
 \[
 \left| \{ h \in \mathcal{H} : h(x) = h(y) \} \right| = \frac{1}{m}
 \]
 e.g., the # of functions under which x and y collide
- \mathcal{H} is universal if when h is chosen randomly from \mathcal{H}, the chance of collision between x and y is $\frac{1}{m}$

Universal Hashing

- **Problem:** For any choice of hash function, there exists a bad set of identifiers—malicious adversary could force poor performance.
- **Solution:**
 - **RANDOMIZE!**
 - Choose hash function at random, independent of keys!
 - To do this, create a set of hash functions, \mathcal{H}, from which h can be randomly selected!
Universal Hashing

A single pair collides with probability $\frac{1}{m}$:
That is, $E[c_{xy}] = 1/m$. Therefore,

\[
E[C_x] = E\left[\sum_{y \in T-\{x\}} c_{xy} \right] \\
= \sum_{y \in T-\{x\}} E[c_{xy}] \\
= \sum_{y \in T-\{x\}} \frac{1}{m} \\
= \frac{n-1}{m} \\
< \alpha
\]

- So, the expected number of collisions with x is $< \alpha$.

Constructing a Universal Hash Function

- Let m be prime
- Decompose key x into $r + 1$ digits, each with value $\{0, 1, \ldots, m - 1\}$; that is,
 \[x = < x_0, x_1, \ldots, x_r >, \text{ where } 0 \leq x_i < m \]
- Pick $< a_0, a_1, \ldots, a_r >$ from $\{0, 1, \ldots, m - 1\}$; set
 \[h_a(x) = \sum_{i=0}^{r} a_i x_i \mod m \]
- How big is $\mathcal{H} = \{ h_a \}$?

One h for each choice of the a_i; so

\[|\mathcal{H}| = m^{r+1} \]

Universal Hashing Cont.

Theorem

\mathcal{H} is universal.

Proof

- Let $x = \langle x_0, x_1, \ldots, x_r \rangle$ and $y = \langle y_0, y_1, \ldots, y_r \rangle$
 be distinct keys.
- x and y differ in at least one digit position.
- Without loss of generality, assume $x_0 \neq y_0$.
- Must show
 \[|\{ h_a : h_a(x) = h_a(y) \}| = \frac{|\mathcal{H}|}{m^r} = m^r \]

That is, that the # of functions h_a under which x and y collide is $\frac{|\mathcal{H}|}{m^r} = m^r$.

Universal Hashing Cont.

- Idea: Show that for any choice of a_0, a_2, \ldots, a_r
 there is exactly one choice of a_0 such that $h_a(x) = h_a(y)$.

 - m is prime \rightarrow $(x_0 - y_0)$ has multiplicative inverse modulo m.
 - There is a unique solution for a_0 modulo m:
 \[a_0 (x_0 - y_0) \equiv - \sum_{i=1}^{r} a_i (x_i - y_i) \mod m \]
- m^r possible values for $\langle a_0, a_1, \ldots, a_r \rangle$ \rightarrow each pair of keys x and y collides for exactly m^r values of a.
- m^{r+1} possible values for $a \rightarrow x$ and y collide with probability $m^r / m^{r+1} = 1/m$.
- \mathcal{H} is universal.