
Introduction to Algorithms October 15, 2003
Massachusetts Institute of Technology 6.046J/18.410J
Professors Shafi Goldwasser and Silvio Micali Handout 16

Quiz 1 Solutions� Do not open this quiz booklet until you are directed to do so. Read all the instructions first.� When the quiz begins, write your name on every page of this quiz booklet.� The quiz contains five multi-part problems. You have 80 minutes to earn 80 points.� This quiz booklet contains 13 pages, including this one. An extra sheet of scratch paper is
attached. Please detach it before turning in your quiz.� This quiz is closed book. You may use one handwritten A4 or

������ ���
	�	 � � crib sheet. No
calculators or programmable devices are permitted.� Write your solutions in the space provided. If you need more space, write on the back of the
sheet containing the problem. Do not put part of the answer to one problem on the back of
the sheet for another problem, since the pages may be separated for grading.� Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite
known results.� Do not spend too much time on any one problem. Read them all through first, and attack
them in the order that allows you to make the most progress.� Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.� Good luck!

Problem Points Grade Initials

1 11

2 19

3 10

4 20

5 20

Total 80

Name: Solutions
Circle your recitation letter and the name of your recitation instructor:

David A B Steve C D Hanson E F

Handout 16: Quiz 1 Solutions 2

Problem -1. Recurrences [11 points]

Solve the following recurrences. Give tight, i.e. ������ , bounds.

(a) �������� � 	 ���� ����� �"!$#&%�� [2 points]

Solution: ��'�����(�)�� ! #&%���� by Case 3 of the Master Method. We have: �+*-,/.10324�(� �
and 56����7�8� ! #9%�� . Thus, if :;� 	 , then 56'�+�<�>=?�� �A@CB � . The regularity condition,D �E56'�+FHGI�KJMLN�O56���� holds here for L4�QPSRHR .
You received one point if you mentioned Case 3 of the Master Method and showed
that it complied with the regularity condition and one point if you gave the correct
answer.

(b) ��'�+���UTE�� � � ��� �*-. � [2 points]

Solution: Note that we can not use the Master Method to solve this recurrence. If we
expand this recurrence, we obtain:

��'�+��� �#&%�� � �#&% � � � �#9% � ! P�P�P
�#9% �� �(�V�

*-. �W X Y � 	#&% ��/Z �
�[� *-. �WX Y � 	#&%��V\^] �_�[� *-. �WX Y �] �`��'�;#&%�#9%��a�IP

Handout 16: Quiz 1 Solutions 3

(c) ��������_bH�����FHc��d�e� *-,/.1f ! [2 points]

Solution: ��'�+�g�U�)�� *-,/.�f ! #9%g�+� by Case 2 of the Master Method.
You received one point if you mentioned the correct case of the Master Method and
one point for the correct answer. A common error was to not cite which case of the
Master Method you used.

(d) Write down and solve the recurrence for the running time of the DETERMINISTIC SELECT

algorithm using groups of 3 (rather than 5) elements. The code is provided on the last
page of the exam. [5 points]

Solution: ��'�+���_��'�+FHc��O�)��hTi�+FHc��O�jLk��P We solve this recurrence using a recursion
tree, see Figure 1. The height of the tree is at least #9l�%nmo� and is at most #9l�%�mAp � � and
the sum of the costs in each level is � . Hence ��������`��'�;#9%���� .
A correct recurrence received 3 points. One point was awarded for solving whichever
recurrence you gave correctly and one point was awarded for justification. An incor-
rect recurrence received 1 point if it was almost correct.
A common error was omitting the ��qTi��Fic�� term in the recurrence.

n

n

n

n

n

n/3 2n/3

n/9 2n/9 2n/9 4n/9

Figure 1: Recursion tree

Handout 16: Quiz 1 Solutions 4

Problem -2. True or False, and Justify [19 points]

Circle T or F for each of the following statements, and briefly explain why. The better your
argument, the higher your grade, but be brief. Your justification is worth more points than your
true-or-false designation.

(a) T F Given a set of � integers, the number of comparisons necessary to find the max-
imum element is �r\ 	 and the number of comparisons necessary to find the
minimum element is �s\ 	 . Therefore the number of comparisons necessary to
simultaneously find the smallest and largest elements is TE�V\ T . [3 points]

Solution: False. In recitation, we gave an algorithm that uses cH��F�T comparisons
to simultaneously find the maximum and minimum elements.
A common error was to say, ”You can just keep track of min and max at the
same time”, which does not say how many comparisons that would take or how
it would work.

(b) T F There are � people born between the year 0 A.D. and the year 2003 A.D. It is
possible to sort all of them by birthdate in tu'�;#9%���� time.

Solution: True. We can represent a birthdate using L digits. This database can
then be sorted in vw'Lx�y�+�g�_vw���� time using RADIX SORT.
Common errors included saying, ”Use Mergesort” or ”Use Radix Sort” (with no
explanation).

Handout 16: Quiz 1 Solutions 5

(c) T F There is some input for which RANDOMIZED QUICKSORT always runs in �)�� � �
time. [3 points]
Solution: False. The expected running time of RANDOMIZED QUICKSORT is����;#&%���� . This applies to any input.
A common error was to say, ”RANDOMIZED QUICKSORT will take vj'� � � only
if it’s very unlucky”, but you needed to say what it’s expected runtime is.

(d) T F The following array z is a Min Heap:

T { R � 	�| 	 c 	 T T�T { |
[3 points]

Solution: True.

Handout 16: Quiz 1 Solutions 6

(e) T F If 56������U=?~}d'���1� and }d'�+���Uvwq56'�+��� then 56'�+���`���}d'�+��� . [3 points]

Solution: False. For example 56'�+�g��� � and }d������_� .
A common error was to mix up 5 and } or v and = .

(f) T F Let �$��]��/� be integers, where �>��c and 	
�]��/� � � . Let �o�X�� be the hash
function mapping a � -bit integer G � G � P3P�P�G � to the 2-bit value G X G � . For example,�C�m � '� |��n|u	y|�	�	 ��� 	y| .
The set �i� �X��j� 	��]���� � �$� is a universal family of hash functions from � -bit
integers into � |�| � |�	 � 	�| � 	�	 � . [4 points]

Solution: False. Take �^� | ����� 	 . Then all of � ’s binary digits are the same
as � ’s, except for the least significant bit. Thus, if we choose one of the � hash
functions at random, ���y���a��"���`�a'���A�$�Qh� � \�����F�� � �>q�?\ 	 �1F��w� 	 Fib�P If this
were a universal class of hash functions, then this probability should be at most	 Fib .
A common error was to show a single counter-example without explanation.

Handout 16: Quiz 1 Solutions 7

Problem -3. Short Answer [10 points]

Give brief, but complete, answers to the following questions.

(a) Explain the differences between average-case running time analysis and expected run-
ning time analysis. For each type of running time analysis, name an algorithm we
studied to which that analysis was applied.

[5 points]

Solution: The average-case running time does not provide a guarantee for the worst-
case, i.e. it only applies to a specific input distribution, while the expected running
time provides a guarantee (in expectation) for every input.
In the average-case running time, the probability is taken over the random choices
over an input distribution. In the expected running time, the probability is taken over
the random choices made by the algorithm.
The average-case running time of BUCKET SORT is ������ when the input is chosen at
random from the uniform distribution. The expected running time of QUICK SORT is��'�;#9%���� .

Handout 16: Quiz 1 Solutions 8

(b) Suppose we have a hash table with Ti� slots with collisions resolved by chaining, and
suppose that ��F � keys are inserted into the table. Assume each key is equally likely to
be hashed into each slot (simple uniform hashing). What is the expected number of
keys for each slot? Justify your answer. [5 points]
Solution: Define � � (for � � 	 ��P�P3P3���) to be the indicator which is 1 if element �
hashes to slot] and 0 otherwise. Then �j�-� � � �¢¡¤£��-� � � 	 �<� 	 FCqTi���kP Then the
expected number of elements in slot] is �j�¦¥ � p �� Y � � � �§�Q¥ � p �� Y � �w� � � �§�¨�+FC � hTi�+���K�	 F 	y© by linearity of expectation.

Handout 16: Quiz 1 Solutions 9

Problem -4. Checking Properties of Sets [20 points]

In this problem, more efficient algorithms will be given more credit. Let ª be a finite set of �
positive integers, ª¬«® @ . You may assume that all basic arithmetic operations, i.e. addition,
multiplication, and comparisons, can be done in unit time. In this problem, partial credit will be
given for correct but inefficient algorithms.

(a) Design an vw��;#&%���� algorithm to verify that:¯ �±°_ª�� W²´³Iµ·¶N¸>¹ � ¹ m P
In other words, if there is some subset �>°`ª such that the sum of the elements in �
is less than ¹ � ¹ m , the your algorithm should output “no”. Otherwise, it should output
“yes”. Argue (informally) that your algorithm is correct and analyze its running time.
[10 points]

Solution: Sort the set ª in time vw��;#&%��+� using vw'�;#9%���� sorting algorithm such as
MERGE SORT or HEAP SORT. For each � between 1 and � , verify that ¥ �X YCº"» X � ¸� m . By maintaining a running sum, checking this sum for each value of � requires only
one addition and one comparison operation. Thus, the total running time is vw��;#&%������vj'�����(vw'�;#9%���� .
Correctness: The key observation is that every set of � elements is at least � m iff the
sum of the smallest � elements is at least � m . Thus, if we sort the elements, the sum of
the first � elements, namely the � smallest elements, will be at least � m iff every set of
size � has sum at least � m .
The following procedure CHECKALLSUMS takes as input an array z containing ª
and an integer � indicating the size of ª .

CHECKALLSETS(z����)
1 Sort z using MERGESORT

2 sum ¼ 0
3 from]�¼ 1 to �
4 sum ¼ sum + z½�-]q�
5 if sum J�� m
6 return “no”
7 return “yes”

A common error was to use COUNTING SORT, which would not necessarily be effi-
cient for an arbitrary set of � integers.
Many people got this problem backwards, i.e. they tried to find some set such that its
sum was at least its size cubed. This was not heavily penalized.

Handout 16: Quiz 1 Solutions 10

(b) In addition to ª and � , you are given an integer �"� 	?� � � ��� . Design a more efficient
(than in part (a)) algorithm to verify that:¯ �±°_ª�� ¹ � ¹ �U�"� W²´³Iµ ¶N¸ � m P
In other words, if there is some subset �`°_ª such that � contains exactly � elements
and the sum of the elements in � is less than � m , then your algorithm should output
“no”. Otherwise, it should output “yes”. Argue (informally) that your algorithm is
correct and analyze its running time. [10 points]

Solution: Find the � th smallest element using the linear time
DETERMINISTICSELECT algorithm. Then find the � smallest elements using
the PARTITION procedure. Check that the sum of these � smallest elements is greater
than � m . The total runtime is vj'�+�+�¾vj'�����evwq�C���(vj'��� .
CHECKSETSOFSIZEK(z����§�k�)
1 Run SELECT(z¿�����k��� to find � ²ÁÀ smallest element
2 Run PARTITION(z¿�������) to put � smallest elements in z�� 	 P�P�P��n�
3 sum ¼ 0
4 from]�¼ 1 to �
5 sum ¼ sum + z½�-]q�
6 if sum J
� m
7 return “no”
8 return “yes”

Correctness: Again, as in part (a), the key observation is that every set of � elements
has sum at least � m iff the sum of the � smallest elements is at least � m .

Handout 16: Quiz 1 Solutions 11

Problem -5. Finding the Missing Number [20 points]

Suppose you are given an unsorted array z of all integers in the range | to � except for one integer,
denoted the missing number. Assume ���`T � \ 	 .

(a) Design a vw'�+� Divide and Conquer algorithm to find the missing number. Partial
credit will be given for non Divide and Conquer algorithms. Argue (informally) that
your algorithm is correct and analyze its running time. [12 points]

Solution: We can use SELECT to find the median element and check to see if it is in
the array. If it is not, then it is the missing number. Otherwise, we PARTITION the
array around the median element � into elements � � and �¾� . If the first one has size
less than �Â� 	 , then we recurse on this subarray. Otherwise we recurse on the other
subarray.
The procedure MISSINGINTEGER(z������O�-]��/���) takes as input an array z and a range�-]��/��� in which the missing number lies.

MISSINGINTEGER(z��O�-]��A���)
1 Determine median element � in range]ÃP�P3P��
2 Check to see if � is in z
3 PARTITION z into Ä , elements Je� , and Å , elements ¸ �
4 If SIZE(Ä) JÆ�½� 	
5 MISSINGINTEGER(Äj�O�-]����Ã�)
6 Else MISSINGINTEGER(Å¤�O� ��� 	 �/���)

The running time is vw���� because the recurrence for this algorithm is ��'�+�¨���'�+F�T���� � , which is vw���� by the Master Method.
Common errors included using a randomized, instead of deterministic, partitioning
scheme and using COUNTING SORT and then stepping through the array to find adja-
cent pairs that differ by two, which is not a Divide and Conquer approach.

Handout 16: Quiz 1 Solutions 12

(b) Suppose the integers in z are stored as � -bit binary numbers, i.e. each bit is | or 	 .
For example, if �)�`T and the array z(�>� |�	 � |�| � 	�	 � , then the missing number is 	y| .
Now the only operation to examine the integers is BIT-LOOKUP ']1�/�n� , which returns
the � th bit of number z½�-]q� and costs unit time. Design an vj'��� algorithm to find the
missing number. Argue (informally) that your algorithm is correct and analyze its
running time. [8 points]

Solution: We shall examine bit by bit starting from the least significant bit to the most significant
bit. Make a count of the number of 1’s and 0’s in each bit position, we can find whether the missing
number has a 0 or 1 at the bit position being examined. Having done this, we have reduced the
problem space by half as we have to search only among the numbers with that bit in that position.
We continue in this manner till we have exhausted all the bit-positions (ie., � to 1).
The algorithm is as follows. For convenience, we have 3 sets ª��kª º �kª � which are maintained as
link-lists. ª contains the indices of the elements in z which we are going to examine while ª º (ª �) contains the indices of the elements in z which have 0 (1) in the bit position being examined.

MISSING-INTEGER �z����+�
1 �)¼ #&%�� ÇÆ���(T � \ 	
2 ªÈ¼ � 	 �kTu��P3P�PÉ���§�
3 ª º ¼ ª � ¼ ��� Ç Initialized to Empty List
4 count0 ¼ count1 ¼ |
5 for posn ¼ � downto 1 do
6 for each]gÊËª do
7 bit ¼ BIT-LOOKUP �]�� posn �
8 if bit � |
9 then count0 ¼ count0 � 	

10 Add] to ª º
11 else count1 ¼ count1 � 	
12 Add] to ª �
13 if count0 � count1
14 then missing � posn �"¼ 	
15 ªr¼ ª �
16 else missing � posn �"¼ |
17 ªr¼ ª º
18 ª º ¼ ª � ¼ ���
19 count0 ¼ count1 ¼ |
20 return missing

It can be noted that the following invariant holds at the end of the loop in Step 5-19.� The bits of the missing integer in the bit position (posn to �) is given by
missing � posn ��P�P3P missing � k � .� ªÈ�Ì�O] � � ²ÁÀ bit of z½�-]q�d� missing � ��� for posn � � � �o�

This loop invariant ensures the correctness of the algorithm.
Each loop iteration (Step 5-19) makes ¹ ª ¹ BIT-LOOKUP operations. And the size of ª is halved in
each iteration. Hence total number of BIT-LOOKUP operations is ¥ �ÉÍ �X YCº^��AÎ , which is vj'�+� .
The grading for this problem was (-6) points for an algorithm that runs in �)����C� , like RADIX SORT

(or any of a number of built-from-scratch radix-sort-like approaches). Another point was deducted
for for not recognizing that and thus that the
above solutions are *not* time.

Handout 16: Quiz 1 Solutions 13

DETERMINISTICSELECT(z����§��])
1 Divide the elements of the input array z into groups of c elements.
2 Find median of each group of 3 elements and put them in array Ä .
3 Call DETERMINISTICSELECT(Äj���+FHc����+F ©) to find median of the medians, � .
4 Partition the input array around � into z � containing � elements � �

and z � containing �[\ ��\ 	 elements ¸ � .
5 If]§�(�¿� 	 , then return � .
6 Else if] � � , DETERMINISTICSELECT(z � �k�$��]).
7 Else if]��
� , DETERMINISTICSELECT(z � ���V\e��\ 	 ��]+_q�¤� 	 �).

SCRATCH PAPER

SCRATCH PAPER — Please detach this page before handing in your quiz.

