
Introduction to Algorithms October 3, 2003
Massachusetts Institute of Technology 6.046J/18.410J
Professors Shafi Goldwasser and Silvio Micali Handout 13

Practice Quiz 1
� Do not open this quiz booklet until you are directed to do so. Read all the instructions first.� When the quiz begins, write your name on every page of this quiz booklet.� The quiz contains 5 multi-part problems. You have 80 minutes to earn 80 points.� This quiz booklet contains 10 pages, including this one. Two extra sheets of scratch paper

are attached. Please detach them before turning in your quiz.� This quiz is closed book. You may use one handwritten A4 or
������ ���
	�	 � � crib sheet. No

calculators or programmable devices are permitted.� Write your solutions in the space provided. If you need more space, write on the back of the
sheet containing the problem. Do not put part of the answer to one problem on the back of
the sheet for another problem, since the pages may be separated for grading.� Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite
known results.� Do not spend too much time on any one problem. Read them all through first, and attack
them in the order that allows you to make the most progress.� Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.� Good luck!

Problem Points Grade Initials

1 12

2 12

3 30

4 13

5 13

Total 80

Name: Solutions

Handout 13: Practice Quiz 1 2

Problem 1. Recurrences [12 points]

Solve the following recurrences. Give tight, i.e. ������ , bounds.

(a) � � ���������� � ����������
� �
Solution: We use the Master Theorem: note that "!�# � �%$ 	 �����'& , so the solution is
� � �����������)(+*-,/.102� .

(b) � � ������43657� � ����859��� � (+,8:
Solution: First, notice that

� (+,;: � � (+,�< (this can be seen by taking =# of both
sides). Since =!�#6>)365?� =# � � @ , we use case (ii) of the Master Theorem:
� � �����������BAC "!�#D��� .

(c) Set up the recurrence for Strassen’s matric multiplication algorithm and solve it.

Solution: The recurrence is: �EF���D�4G1�EF�����6���IHJ�K� .
We can apply the Master Method. We calculate � (+*-,/LNM �O� (+*-,P.1Q . Since RS����T�UH��8�
and RS������4VWF� (+*-, . Q � , we can use Case 1. Thus, �EF���D�4��F� (+*-, . Q � .

Handout 13: Practice Quiz 1 3

Problem 2. Short Answer [12 points]

Give brief, but complete, answers to the following questions.

(a) Briefly describe the difference between a deterministic and a randomized algorithm,
and name two examples of algorithms that are not deterministic.

Solution: On identical inputs, a deterministic algorithm always performs exactly the
same computations and returns the same output. A randomized algorithm is one
which “flips coins,” i.e. one which makes random choices that may cause it to per-
form different computations, even on the same input. RANDOMIZED-QUICKSORT

and RANDOMIZED-SELECT are two examples of non-deterministic algorithms.

(b) Describe the difference between average-case and worst-case analysis of determinis-
tic algorithms, and give an example of a deterministic algorithm whose average-case
running time is different from its worst-case running time.

Solution: An average-case analysis assumes some distribution over the inputs (e.g.,
uniform), and computes the expected (average) running time of an algorithm subject
to that distribution. A worst-case analysis considers those inputs which force an al-
gorithm to run for the longest amount of time, and computes the running time under
those inputs. QUICKSORT has a worst-case running time of ���� � � (on an already-
sorted or reverse-sorted array), but has an average-case running time of ��F�X =!�#����
(assuming all input permutations are equally likely).

(c) If you can multiply 4-by-4 matrices using 48 scalar multiplications, can you multiply
� � � matrices asymptotically faster than Strassen’s algorithm (which runs in V%�� (+,�Q �
time)? Explain your answer.

Solution: Our algorithm breaks an � � � matrix into a 4-block by 4-block matrix
(where each block is ���;5 � ���85). It then multiplies the appropriate blocks using
48 recursive calls (corresponding to the scalar multiplications) and combines their
products. Our new algorithm’s running time is �Y����Z�[5 � �YF���859�\�
���� � � , which is
V%�� (+*-,�] > < � by the Master Theorem. For comparison with Strassen’s algorithm, note
that =!�# � G^�_ =!6# � . G

� �_ =!�# > 5a` . Therefore our algorithm is asymptotically better.

Handout 13: Practice Quiz 1 4

Problem 3. True or False, and Justify [30 points]

Circle T or F for each of the following statements, and briefly explain why. The better your
argument, the higher your grade, but be brief. Your justification is worth more points than your
true-or-false designation.

(a) T F Every comparison-based sort uses at most VWF�X =!�#���� comparisons in the worst
case.

Solution: False. INSERTION-SORT , for example, uses ��F� � �Xb�4V%��X "!�#S��� com-
parisons in the worst-case (a reverse-sorted array). The statement would be true
if it read “. . . at least cd��X "!�#D��� comparisons in the worst case.”

(b) T F RADIX-SORT is stable if its auxiliary sorting routine is stable.

Solution: True. If two numbers are equal, then they have the same digits. Each
intermediate sort is stable, so the two equal numbers never change relative posi-
tions.

(c) T F It is possible to compute the smallest � � elements of an � -element array, in
sorted order, in VWF��� time.

Solution: True. We can SELECT the � � th smallest element and partition around
it, then sort those � � elements in VWF��� time. Alternately, we can build a min-
heap in VWF��� time and call EXTRACT-MIN � � times, for a total runtime of
V%��e�'� �X =!6#����D�4VWF��� .
Some incorrect solutions amounted to: “we must do � � order statistic queries,
each of which take V%���� time, for a total running time of VWF�S� ��� .” However,
this argument does not preclude us from coming up with a more clever algorithm
(like the one above) that is more efficient. In fact, a similar argument would
“prove” that sorting must take cdF� � � time (despite the existence of MERGESORT

etc.), because we must do � order statistic queries!

Handout 13: Practice Quiz 1 5

(d) T F Consider hashing the universe fg�ihKjlk�m�m�mnk2�6oDp 	8q , rs$U� , into the hash table
h;jtk 	6q . Consider the family of hash functions uv�Oh8w � k�m�m�mnk2w o q , where wyx-Fz)� is
the { th bit of the binary representation of z . Then u is universal.

Solution: False. Take z|�4jtk~}�� 	 . Then all of z ’s binary digits are the same as
} ’s, except for the least significant one. Thus �������N����w\Fz)���4w\�}l���C�O�r�p 	 �/�8rE$
	 ��� . If u were universal, the probability would be at most 	 ��� .
Some incorrect solutions said that the probability of a collision, taken over ran-
dom choices of w , z , and } is 1/2. This is true, but the universality condition
demands something stronger: it says that for every fixed (distinct) pair z\k~} , their
probability of collision over the random choice of w must be at most 1/2.

(e) T F RANDOMIZED-SELECT can be forced to run in cd��X "!�#D��� time by choosing a
bad input array.

Solution: False. RANDOMIZED-SELECT runs in expected VWF��� time; the only
way it can take longer is if its random choices of pivots are unlucky. The input
array cannot force these unlucky choices.

(f) T F For every two functions RSF��� and �BF��� , either RS������ VW��B����/� or �B����I�
V%�RSF���/� .
Solution: False. Let RS����E���/�=�Z� and �B����Y���N!���� ; then neither case holds.
Another example is RS����^� � � and ��F���X�g���=�+� : . Finally, one could let RS����
and �B���� be any strictly-negative functions; by a technical condition of the defi-
nition, RSF��� must be at least 0 to be V%F�B����P� .
Many incorrect answers argued that one of the statements R�����J��H��B���� , R�������
H��B���� , or �B����%��HNRSF��� must be true. This is correct for any particular value
of � , but it doesn’t mean that the same statement is true for all sufficiently large
values of � , which is the condition needed in the definition of big- V .

Handout 13: Practice Quiz 1 6

(g) T F Let H be a universal hash family mapping keys into a table of size ����� � . Then,
if we use random w¡ '¢ to hash � keys into the table, the expected number of
collisions is at most 	 �8� .

Solution: False. The probability that any two elements hash to the same value
is at most 	 �8� � . We want to calculate £W� ¤¥�¦��£%�¨§ x=©8ª ¤�x«ª~� where the indica-
tor random variable ¤ex«ª is a 1 if there is a collision between elements { and ¬
and 0 otherwise. Thus, ¤x«ª is 1 with probability at most 	 �;� � and 0 otherwise.
£%�+¤�x«ª��¦� 	 �8� � . So, we have £W� ¤¥�¦� § x=©8ª ¤�x«ª®� § x=©8ª 	 �;� � � 	 �8� � ��¯ : ��°²±
	 ��� .

(h) T F The following array ³ is a max-heap:

@�j'�6�'G 	 � �85 � 5�` 	 �I���'�
Solution: False. See that G|�U³��«@8� ± ³����Y��@8�D� �

, which is a violation of the
max-heap property.

(i) T F Suppose we use HEAPSORT instead of INSERTION-SORT as a subroutine of
BUCKET-SORT to sort � elements. Then BUCKET-SORT still runs in average-
case linear time, but its worst-case running time is now VWF�X =!�#S��� .
Solution: True. Even if all the elements land in the same bucket (the worst-case
input), HEAPSORT sorts them in V%��X "!�#���� time.

Handout 13: Practice Quiz 1 7

(j) T F If memory is limited, one would prefer to sort using HEAPSORT instead of MERGESORT .

Solution: True. MERGESORT is not in-place, which means it requires an auxil-
iary array as big as the input. HEAPSORT is in-place, which means it only uses
V% 	 � auxiliary space.

Handout 13: Practice Quiz 1 8

Problem 4. Mode finding [16 points]

Assume that you are given an array ³�� 	 mNm�m/��� of distinct numbers. You are told that the sequence
of numbers in the array is unimodal, i.e., there is an index { such that the sequence ³E� 	 m�m�m/{´� is
increasing (i.e. ³E� ¬�� ± ³�� ¬X� 	 � for 	 �¡¬ ± {\p) and the sequence ³��+{�m�m�m/�)� is decreasing. The
index { is called the mode of ³ .

Show that the mode of ³ can be found in V%� "!�#���� time.

Solution: The most common solution was to modify binary search to look at the pair of successive
middle elements of the array.
If the array is only a single element, that element is the mode. If the successive elements are
increasing, we know that our elements are in the increasing portion of the array. Thus, the mode
will be found to the right of the pair, and we recurse on that half of the array. Otherwise, we know
the pair is in the decreasing portion of the array, and the mode will be found to the left. (Assuming
indices increase from left to right.)

FIND MODE �³µ�
1 if �¶F·��)�9¸/w\�³X��� 	 �then return 	
2 �²{º¹�» ¼F¶F·��)�9¸/w\�³µ�P���;½
3 if ³E�«�²{�¹�� ± ³��+�²{º¹µ� 	 �
4 then return FIND MODE �³E� 	 m�m�m��²{º¹��¾�
5 else return �²{º¹µ� FIND MODE F³��+�²{º¹X� 	 mNm�mP¶F·����¿¸/w\F³X���¾�

To compute the running time we note FIND MODE employs a divide and conquer strategy. The
divide step requires constant work to compute the middle index of the array. The combine step
require constant work to compute the return value. The conquer step recurses on half the array,
yielding the recurrence �Y����D�
�EF�����6������ 	 � , which implies �YF��������� "!�#���� , as needed.

Handout 13: Practice Quiz 1 9

Problem 5. Assigning Grades [13 points]

It is the not-too-distant-future, and you are a computer science professor at a prestigious north-
eastern technical institute. After teaching your course, “6.66: Algorithms from Hell,” you have to
assign a letter grade to each student based on his or her unique total score. (Scores can only be
compared to each other.) You are grading on a curve, and there are a total of À different grades
possible. You want to rearrange the students into À equal-sized groups, such that everybody in the
top group has a higher score than everybody in the second group, etc. However, you don’t care
how the students are ordered within each group (because they will all receive the same grade).

(a) Describe and analyze a simple algorithm that takes an unsorted � -element array ³ of
scores and an integer À , and divides ³ into À equal-sized groups, as described above.
Your algorithm should run in time V%���Àl� . (If you find a faster algorithm, see part (c).)
You may assume that � is divisible by À . Note: À is an input to the algorithm, not a
fixed constant.

Solution: [5 points] Our algorithm first uses SELECT to find the ����À th order statistic,
then partitions around it. At this point, the first ���6À elements of the array form the
bottom group. Then it uses SELECT to find the ����À th order statistic of the remainder of
the array, and partitions around it, etc., until all the groups have been separated. Each
SELECT and PARTITION requires linear time in the number of remaining elements,
which is at most � , so the running time is VWF��Ày� .

Handout 13: Practice Quiz 1 10

(b) In the case that À��� , prove that any algorithm to solve this problem must run in time
cdF�X =!�#ÁÀy� in the worst case. Recall that we are only considering comparison-based
algorithms, i.e., algorithms that only compare scores to each other as a way of finding
information about the input. Hint: There is a very short proof.

Solution: [3 points] Any algorithm for this problem can fully sort an array of � ele-
ments if we provide it with an input where ÀÂ�Ã� . Since sorting requires cd��X "#����
comparisons in the worst case, the algorithm must run in time cdF�X =#D�����Äcd��X "#ÁÀy�
in the worst case.

(c) Now describe and analyze an algorithm for this problem that runs in time VWF�X =!�#�Àl� .
You may also assume that À is a power of � , in addition to assuming that � is divisible
by À .

Solution: [5 points] We use a recursive algorithm GROUP, which takes an array and a
value À , and works as follows: if À|� 	 , return. Otherwise, SELECT and PARTITION

around the median of the array. Then call GROUP on the lower half of the array with
Ày�6� , and again on the top half with Ày��� .
To see that this works, note that after partitioning, all grades in the upper half of the
array are greater than those in the lower half. By induction, the two recursive calls
divide each half into Àl��� groups, for a total of À groups. Finally, note that the base
case satisfies the problem statement.
We now analyze the running time: the recurrence describing the algorithm’s running
time is �Y���k2Ày���[�;�Y������tk2Ày�6������������ because SELECT and PARTITION are linear-
time. The base case of the recurrence is �Y���k 	 �e�Å�� 	 � for any � . Therefore the
recurrence tree does ��F��� work at each level, and has =#ÁÀ levels, for a total running
time of �eF�X =!�#�Àl� .
Some students correctly observed that this solution is essentially an “early quitting”
QUICKSORT , where the pivot is always chosen to be the median, and the algorithm
terminates once the recursion depth reaches =#ÁÀ .

SCRATCH PAPER — Please detach this page before handing in your quiz.

SCRATCH PAPER — Please detach this page before handing in your quiz.

