Introduction to Algorithms October 31, 2003
Massachusetts Institute of Technology 6.046J/18.410J
Professors Shafi Goldwasser and Silvio Micali Handout 19

Problem Set 6

This problem set is due in recitation on Friday, November 14.
Reading: Chapters §17.1-17.4, §22.1-22.5, §23.1-23.2, §24.1-24.5.

There are four problems and one exercise. You should only hand in Problems 6.1 through
6.4. The first exercise is for review purposes and will not be graded. Each problem is to be done
on a separate sheet (or sheets) of three-hole punched paper. Mark the top of each sheet with your
name, the course number, the problem number, your recitation section, the date, and the names of
any students with whom you collaborated.

Exercise 6-1. Graphs: Terminology and Definitions
Note: This problemis not to be handed in.

A graph G = (V, E) is a set of vertices, V, and edges, £ C V x V. In this problem, we will
review some basic properties of graphs. For each question, answer True or False or fill in the blank
where indicated. Justify your answers. (It may be useful to refer to Section B.4 in CLRS.)

(@) An undirected acyclic graph contains ©(n) edges.

(b) A directed acyclic graph contains ©(n) edges.

(c) A densegraphcontains edges.

(d) Let G = (V, E) be an undirected graph. If max,cy 6(v) = O(n), then G is dense.
(e) Ifagraphis sparse, thenitis a tree.

(f) For every directed graph, there is a unique topological sort.

(9) A graph is connected iff it contains a cycle.

(h) Every undirected graph has a minimum spanning tree.

(i) Adirected acyclic graph is not strongly connected.

(j) A directed acyclic graph contains a vertex v such that §; 5 (v) = 0.

(k) If there is a directed path from ¢ to 7 in a directed graph, then vertices 7 and j form a
connected component.

(I) Suppose we have a directed graph G = (V, E) that is strongly connected. For any
depth-first search of G, if all the forward edges of G' (with respect to the depth-first
forest) are removed from G, the resulting graph is still strongly connected.

2 Handout 19: Problem Set 6

Problem 6-1. Cycles

(@) Give an O(E?1gV) algorithm to find a minimum weight cycle in a given weighted,
undirected, connected graph in which all edge weights are non-negative. Prove your
algorithm is correct and analyze its running time. (Optional Extra Credit Problem:
Can you find a more efficient algorithm for this problem?)

(b) Give an O(V E) algorithm to determine if a given directed, connected graph contains
an edge that is in every cycle. Prove your algorithm is correct and analyze its running
time. (Optional Extra Credit Problem: Can you find a more efficient algorithm for
this problem?)

(c) Suppose that a weighted, directed graph G = (V, E) has a negative-weight cycle.
Give an efficient algorithm to list the vertices of one such cycle. Prove your algorithm
is correct and analyze its running time.

Problem 6-2. Minimum Spanning Trees

(a) Consider the following algorithm, NEw-MST, for computing a minimum spanning
tree. The algorithm takes as input an undirected, weighted, connected graph G. It
sorts the edges in non-increasing order according to edge weight. It then goes through
each edge in G, in the sorted order, and determines if removing that edge disconnects
the graph. If not, then the edge is removed permanently, otherwise the edge remains.

Below, we provide pseudocode for the NEw-MST algorithm.

NEW-MST(G)

1 Sort edges according to edge weight in non-increasing order: ey, ez, ..., €,

2 11

3 Whilei < m:

4 If G\ e, is connected

6 14— 1+1

7 Output G.

Prove that the NEw-MST algorithm outputs a minimum spanning tree of the input
graph G.

(b) Give an efficient algorithm to find a spanning tree for a connected, weighted, undi-
rected graph G such that the weight of the maximum-weight edge in the spanning tree
is minimized. Prove your algorithm is correct.

Problem 6-3. Labeled Graphs and Longest Paths

You are given a directed graph G = (V, E), in which each vertex has a unique label ¢{(v) : V —
Z*, acost functionw : £ — ‘R assigning a weight to each edge, and a source s € V. Additionally,
every edge (i, j) has the property that £(:) < £(j). Design an algorithm to construct an output array
D such that D[i] is the length of the longest path from s to v; in G.

Handout 19: Problem Set 6 3

Problem 6-4. Amortized Weight-Balanced Trees

Consider an ordinary binary search tree augmented by adding to each node z the field size|[x]
giving the number of keys stored in the subtree rooted at x. Let o be a constant in the range
% < «a < 1. We say that a given node z is a-balanced if

sizelleft[z]] < a - size[x]

and
size[right|z]] < a - size|x].

The tree as a whole is a-balanced if every node in the tree is a-balanced. We will study the
following amortized approach to maintaining weight-balanced trees.

(a) Given a node z in an arbitrary binary search tree, show how to rebuild the sub-
tree rooted at x so that it becomes %-balanced. You algorithm should run in time
O (size[x]) time and can use O(size[z]) auxiliary storage.

(b) Show that performing a search in an n-node «-balanced binary search tree takes
O(lgn) worst-case time.

For the remainder of this problem, assume that the constant « is strictly greater than % Suppose
that INSERT and DELETE are implemented as usual for an n-node binary search tree, except that
after every such operation, if any node in the tree is no longer a-balanced, then the subtree rooted
at the highest such node in the tree is “rebuilt” so that it becomes 1-balanced.

We shall analyze this rebuilding scheme using the potential method. For a node z in a binary search
tree 7', we define

A(z) = |size[left[z]] — size[right|z]]],

and we define the potential of 7" as

T)= Y cA),

TET:A(2)>2

where c is a sufficiently large constant that depends on «.

(c) Argue that any binary search tree has nonnegative potential and that a %-balanced tree
has potential 0.

(d) Suppose that m units of potential can pay for rebuilding an m-node subtree. How
large must ¢ be in terms of « in order for it to take O(1) amortize time to rebuild a
subtree that is not «-balanced.

(e) Show that inserting a node into or deleting a node from an n-node a-balanced tree
costs O(logn) amortized time.

