
Introduction to Algorithms Octoberber 31, 2003
Massachusetts Institute of Technology 6.046J/18.410J
Professors Shafi Goldwasser and Silvio Micali Handout 20

Problem Set 5 Solutions

Problem 2-1. Spam and Customer Service.

You run a meat-processing plant in Cambridgeport. Unfortunately, due to a mixup with your sup-
pliers in Peoria, you have accidentally produced a batch of spoiled sausages. When your customer
service desk opens at 8am, there are � customers waiting in the lobby to return the rotten sausages.
Say that customer

�
has ��� sausages, and that all the ��� ’s are distinct. Your underpaid customer

service operator requires ���	��� minutes to handle customer
�
’s complaint, for some constant � . You

cannot “partially process” a complaint—all of customer
�
’s �
� sausage returns must be handled

together—and only one customer can be handled at a time.

Because you want to maintain the golden reputation of your company, you have decided to pay
one dollar to each customer

�
for every minute before

�
’s complaint is completely handled. For

example, if customer 3 is handled first and customer 5 is handled second, you pay ���� dollars to
customer 3 and �����
��������� dollars to customer 5. Give an efficient algorithm to find the order
in which the customers’ complaints should be processed so that the total cost to the company is
minimized. Prove that your algorithm is optimal and analyze its running time.

Solution: Sort the ��� ’s in increasing order and handle the complaints in that order. The running
time is ��� �������� � .
Now we consider correctness. Observe that there is never a reason to have any “idle time” in the
schedule; removing any such holes from the schedule strictly reduces the cost of the solution.

Let "!$#% �&	')(�'�*�*�*)'	 �+ be an optimal schedule (i.e., person ,& is handled first, then)(, and so on).
Suppose that our algorithm is not optimal. Then there must be an

�
and - so that �/.10324��.65 but�87 - . We claim that the schedule 	9:!;#< �&)'�*�*�*='	 	�?>@&�'A CB
'	 	�EDF&�'�*�*�*='	 GB�>@&	'	 ��H'	 GBIDF&	'�*�*�*�'A �+

resulting from swapping)� and CB reduces our costs. This contradicts the optimality of , and
implies that our algorithm is optimal.

To prove the claim, we will show that subtracting the cost of 9 from the cost of yields a positive
number, which establishes that 9 is better than .J

cost of 	K@L J cost of 9 K# +MN�O & payment to customer P under QL +MN�O & payment to customer P under 9
+MN�O &

NMR O & ��.TSQL +MN�O &
NMR O & ��.VUS

2 Handout 20: Problem Set 5 Solutions

+MN�O & � � LWPX�ZY
�[�
��.T\]L +MN�O & � � LWPX�ZY
�[�
� . U\# � � L � �^Y��[� J ��.10FL_� . U0 K`�a� � Lb-c�ZY
�[� J ��.65XL_� . U5 K# � � L � �^Y��[� J ��.10FL_��.65AK`�<� � Lb-c�ZY
�[� J ��.65dL_��.10TK# � � L � �^YeL � �f-gLhY
�[� J ��.10iLj��.65AK# ��-gL � �k� J ��.10lLj��.�5	K2 m�*
Problem 2-2. Splitsville.

Let n be a string no&)'Cn:(�'�*�*�*='In@+ , where n@�]pbq for a finite alphabet q .

A split of n consists of two strings n:�?r�'In@�ts�'�*�*�*='In@�Eu and n`BGrA'In`Bvs�'�*�*�*�'In`B \ , where

(i)
� & 7w� (7 ����� 7w�Hx ;

(ii) -/& 7 -�(7 ����� 7 - N ;
(iii) y � &	'�*�*�*=' �Hx,z�{ y)-/&)'�*�*�*='|- N z #<} ; and

(iv) y � &	'�*�*�*=' �Hx,z�~ y)-/&)'�*�*�*='|- N z #�y�Y'�*�*�*=' � z .
For example, the following are splits of banana:

bnn aaa
ban ana
banaa n

Give an algorithm to determine if two strings � and � form a split of n . You algorithm should take
as input three strings, n�'A�F' and � , where n is a string of � symbols from the alphabet q . If strings� and � form a split of n , it should output “yes”. Otherwise, it should output “no”. Prove that your
algorithm is correct and analyze its running time. (Your algorithm should run in time ��� � . � for
some constant .)
Solution: First check that � ���/�����F�8��� n��]# � . This can be done in time ��� � � . We now use
dynamic programming. For m�� � ��� ��� and m��j-������F� , we set� J � '|-K�!;# � Y if ��&|������� � � and �/&|������� � B are a split of n�&|������� � �ED�Bm otherwise.

1.For every - , m��j-������F� , set
� J m�'v-�K�!$#�Y if ��&|����� BQ#^n�&|����� B , and

� J m�'v-�K�!;#<m otherwise.

2.For every
�
, m�� � ��� ��� , set

� J � 'Am/K�!;#�Y if ��&|����� �i#Zn�&|����� � , and
� J � '	m/K�!$#<m otherwise.

Handout 20: Problem Set 5 Solutions 3

3.For every
� 'v- , Y�� � � � ��� and Yj�4-^� ���F� , set

� J � '|-K�# Y if either (i) ���#�n@�ED�B and� J � LhY'|-Kl#�Y , or (ii) �	B�#^n@�tD�B and
� J � '|-gLwY�K .

4.Return “yes” if and only if
� J � ���;'�� �F� K:#�Y .

Running time is obviously ����� �F�?� �����e#���� � (� . For correctness, observe that if ��&|����� � and ��&|����� B are
a split of no&|����� �ED�B , then the last character of no&|����� �ED�B must come from one of the two strings, and the
remainder of that string plus the other string must be a split of n]&|����� �tD�B�>@& .
Problem 2-3. A Maki a Day ...

To maintain your health, you have decided that you must eat a sushi meal a day for the remaining �
days, ��&)'A��(='�*�*�*='	�+ , of the fall semester. You have exactly two choices for acquiring a sushi meal:

1. On day ��� , you can buy a sushi meal (for consumption on day �`�) from the supermarket at
price ��� . These prices are announced in advance, i.e. on day �l& .

2. On day ��� , you can place an order with bulk-sushi.com to have a sushi meal delivered
to you every evening for days ���v'A���tDF&�'	��ED�(�'�*�*�*�'	��EDF&|& . The cost of this contract is � . Note
that � is fixed and does not vary from day to day.

Since sushi is highly perishable, you cannot “stockpile” sushi meals; you must eat each sushi meal
on the day that you get it. Also, because you hate to waste food and because you can only stomach
exactly one sushi meal per day, you may not get two sushi meals on the same day. For example, you
cannot order from bulk-sushi.com three days after placing a previous bulk-sushi.com
order. Finally, you are not allowed to order from bulk-sushi.com on day ��� if there are less
than 12 days remaining (including day �`�), i.e. you can not have leftover sushi meals at the end of
the � day period.

The problem is to find the cost of the optimal sushi-ordering schedule.

(a) Consider the following greedy algorithm for this problem. This algorithm takes as in-
put � , the price of 12 sushi meals from bulk-sushi.com, and the prices ��&�'H��(�'�*�*�*���+ ,
the price of a sushi meal from the supermarket on each of the � days. At day ��� , it
checks if the total cost of buying a sushi meal from the supermarket for that day and
each of the next 11 days (i.e. days �`� through day ���EDF&|&) is less than � . If so, it buys
a sushi meal for day ��� at price ��� and goes on to the next day. Otherwise, it orders 12
sushi meals (for day ��� through day ���EDF&|&) from bulk-sushi.com at price � and
goes on to day ���tDF&�(. Pseudocode for this algorithm is provided below.

4 Handout 20: Problem Set 5 Solutions

BUYSUSHIGREEDILY(��'���&,'�*�*�*='H��+)
1 Let)�����k#<m .
2 Go from day ��& to day ��+ .
3 On day ��� :
4 If � is greater than the sum of �:� through ���EDF&|& or if there are fewer than 12 days (meals) left,
5 Then buy a sushi meal from the supermarket, let)������)�������b�:� and go to day ���EDF& .
6 Else
7 Place an order with bulk-sushi.com, let =�/���� =�/���o�_� and go to day �`�tDF&�(.
8 Output)����� .

Prove that BUYSUSHIGREEDILY does not produce an optimal solution to the problem.

Solution: For example, if ��#�Y�m and �¡#�y�Y'�Y�'�Y'�Y'�Y'�Y'�Y�'�Y'�Y'�Y'�Y'�Y/'�Y�mm/m z , then
the stated algorithm will buy from bulk-sushi.com on day �:& and from the super-
market on day ��&�� , and thus pay Y�m:�¢Y�mmm total, where as buying from the supermarket
on day ��& and then bulk-sushi on day �`(costs only Yd�^Y�m�#£YY .

(b) Give a dynamic programming algorithm to find the cost of an optimal sushi-ordering
schedule. Prove your algorithm is correct and analyze its running time.

Solution: Let �¤���=����� denote the cost of an optimal ordering schedule for the first �
days. Recall that we cannot have leftover bulk-sushi sushi meals at the end. In
other words, we cannot have made a bulk purchase in the last 11 of these � days.

Observe that

�e���=�H����#a¥�¦�§��t� x �¨�e���=�H�"LwY��)'	�h�_�¤���=���"LwYY
�C�)*
since any optimal schedule must have been optimal up to the start of our last purchase.
Note that �¤���=��m���#^m , and �e���=�H����#ª© x� O & ��� for all ���«YY .
Our dynamic programming algorithm fills in the �¤���=�G�t� table from left to right in ��� � �
time, and we then return �e���=� � � . Correctness follows from the above argument.

(c) Modify your algorithm from part (b) to output an actual optimal sushi-ordering sched-
ule.

Solution: Let ¬��H���e#�	®l¯�����®F�
° � denote that the optimal schedule finishing at day� x (as in part (b), without leftover sushi) gets its sushi from bulk-sushi.com for
the last 12 days of the schedule, and ¬�������#���®��:±�²/³¢´�²���±�� if it gets day � x ’s sushi
from the supermarket. Then we modify the algorithm as follows:

1. Set �¤���=��m��k#<m , and �e���=�H����# © x� O & ��� for all �µ�«YY .
Set ¬��H����#ª��®��@±�²/³¢´�²���±�� for all �µ�«YY .

Handout 20: Problem Set 5 Solutions 5

2. For ��#�Y
¶ to � :
Set �e���=�H����#Z¥�¦�§o�t� x �¨�e���=�H�3LhY
��'	�h�_�¤���=���3LhYY
�I� .
If � x �¨�¤���=�H�3LhY
� 7 �w�¨�¤���=�H�"LwYY
�

then ¬��H���Q!$#<��®��:±�²/³¢´�²���±��
else ¬��H���·!$#<	®l¯�����®i�
° � .

3. Set
� # � .

Repeat until
� #^m :

Output “On day ��� , buy from ¬�� � � ”.
If ¬�� � �8#<��®��:±�²,³¢´�²��±�� , then

� !$# � LwY , else
� !;# � L¸Y
¶ .

Problem 2-4. Printing Neatly.

You are given a sequence of words ¹�&�'I¹�(�'�*�*�*)'A¹Q+ , where word ¹�� has length P=� . You want to lay
out these words neatly in lines of total length º each, by choosing “nice” line breaks. Each word
contains its own whitespace.

A neat line is one that contains close to º characters (without going over). More precisely,
the badness—this is actually a technical term in LATEX—of a line ¹��H'A¹Q�EDF&�'�*�*�*�'I¹8B is given by»	¼�½�¾i¿	À	À !$#Áº^L © B x O � P x . The badness must be nonnegative; all lines must contain at most º
characters.

For example with ºh#%¶Â , one could lay out the following definition from Ambrose Bierce’s The
Devil’s Dictionary in these ways:

HATRED, n. A sentiment<->| badness 3
appropriate to the<----->| badness 7
occasion of another’s<-->| badness 4
superiority.<----------->| badness 13

or

HATRED, n. A<----------->| badness 13
sentiment appropriate to>| badness 1
the occasion of<-------->| badness 10
another’s superiority.<->| badness 3

(a) The badness of a paragraph is the sum of the badnesses of each of the lines of the
paragraph, except the last. Give the most efficient algorithm you can to lay out the
given words ¹�&�'�*�*�*='A¹Q+ in a single paragraph in a way that minimizes the badness of
the paragraph. Prove your algorithm is correct and analyze its running time.

Solution: A greedy algorithm is optimal: just start placing words until placing the next
one would make the line exceed º characters, then go to the next line and continue.

6 Handout 20: Problem Set 5 Solutions

We claim that this is optimal. Let ¬ !;# © +� O & P)+ be the total length of the words in
question. Consider any solution that produces a paragraph with lines º¤&)'	º�(�'�*�*�*='	º R '	º R DF&
for some particular � . Then the badness of the paragraph is given by:RM� O & badness of line º��Ã# RM� O &ÅÄÆ ºWL MÇ 5	È�É/0 PIBAÊË# º���L MÇ 5AÈ�É`r|������� � É S PIB# º���L�¬ � MÇ 5AÈ�É SÍÌ r PIB
*
Thus the optimal algorithm must place as many words as possible in the first � lines of
the paragraph. A moment’s reflection reveals that to maximize the number of words
in the first � lines, one must (1) maximize the number of words in the first �]LhY lines,
and then (2) add as many words as possible to � th line. If (1) were not true, then the� th line would have to hold the “extra” left-over words, and thus could only at most as
many words as if (1) were true. Thus the greedy algorithm described above is optimal.

The running time is straightforwardly ��� � � : for each word, we place it on the same
line if it fits, and start a new line if not. This is a constant-time operation per word if
we keep track of the number of characters that we have already output in the current
line.

(b) Consider the following alternative definition: the badness of a paragraph is the sum
of the cubes of the badnesses of all lines by the paragraph, except the last. Is your
algorithm from part (a) still optimal? Give a proof or a counterexample.

Solution: No, the algorithm from part (a) does not work. If the word lengths areÂ�'AÎ�'�¶�'	Ï and the line length is Ï , then the greedy algorithm will output

line length badness badness �
55555333 | 8 1 1
22 | 2 7 343
999999999| 9 0 0

total: 344

On the other hand, the following layout has better badness:

line length badness badness �
55555 | 5 4 64
33322 | 5 4 64
999999999| 9 0 0

total: 128

Handout 20: Problem Set 5 Solutions 7

(c) Consider a third definition: the badness of a paragraph is the maximum badness of any
line in the paragraph other than the last. Give a dynamic programming algorithm to
minimize the badness of a paragraph. Prove your algorithm is correct and analyze its
running time.

Solution: Let Ð]ÑlÒ=����� denote the cost of laying out words ¹ x 'A¹ x DF&�'�*�*�*)'A¹Q+ op-
timally. That is, consider a paragraph of just the words ¹ x '�*�*�*='A¹Q+ ; Ð]ÑlÒ��H��� is the
minimum achievable badness for such a paragraph.

1. For all � such that ¹ x '�*�*�*�'A¹Q+ all fit on one line (i.e., © +� O x P)�¡� º), we setÐ]ÑlÒ������Ó!;#Ôm . This is correct because the last line of any paragraph does not
contribute to the badness of the paragraph.

2. For all smaller � , let n be the last word that could fit on the same line as � , i.e.,ÕM� O x P)��� º 7 Õ DF&M� O x P=�H*
Then we set

Ð]ÑlÒ=�H���Q!$# ¥�¦�§x=Ö�×�Ö Õ ¥�Ø,Ù��)Ð]ÑlÒ��1���ZY
�)'	ºfL ×M� O x P=�1�)*
Clearly ¥�Ø
Ùi�=Ð]ÑlÒ=������Y
�)'	º¨La© ×� O x P)�1� is the badness of the paragraph formed
by taking the first line as ¹ x '�*�*�*�'A¹ × and then optimally laying out the remaining
words. Thus choosing the optimal � here yields an optimal layout for words¹ x '�*�*�*�'A¹Q+ .

3. Return Ð]ÑlÒ=�GY
� .
We have argued correctness above. As for the running time, step two takes at most���1n]LÚ��� time, but we have no particular a priori bound on this value. We can (possibly
loosely) upper-bound the running time by ��� � (� , since we execute step 2 at most �
times and there are at most � candidates for the end of the first line that we consider
in that step.

