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Problem Set 1 Solutions

Problem 1-1. Recurrence Relations

Solve the following recurrences. Give a
�

bound for each problem. If you are unable to find a
�

bound, provide as tight upper ( � or � ) and lower ( � or � ) bounds as you can find. Justify your
answers. You may assume that ���	��

��� .

(a) ������
���������� ��
������ �
Solution:

� ���! #"%$'&�()
 - By part 1 of the Master Method.

(b) �����*
��,+-����� � 
����!.!/1032
�
Solution:

� ��� . /4032
�*
 - By part 3 of the Master Method.

(c) ���65 � 
��,���65 �87:9 
��;5 �
Solution:

� �<5 � 
 . Substitute = for 5 � . The resulting relation is ����=>
?�@���BA � 
C�;= .
Clearly, this is

� ��=>
 and thus
� �65 � 
 .

(d) �����*
��D����� E�
��F���G�9�H 
��I���G��%J 
��K� �
Solution:
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The figure above shows the recursion tree that helps us in guessing a solution.

We have that

������
UT V  #"%$XW �BYZ[ \^] _ +`�a3bdc
[
� �eT fZ[ \^] _ +`�a3bdc

[
� �g� ��ih�j (H ] � �g�k�l� � ��


Thus we guess that ������
l�m�n� � �*
 and we prove it by substitution. Assume that����=>
UTDop� = for an appropriate constant o and for all =rqs� . Then we have that
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������
tT o�u � v �so�u �� a �so�u �53w � � �� _ +`�a3b ox�,� c � �
� o � �yh _ �{za3b o � �|h � � cT o � �~} for o�� a-b�� �{z

Hence ������
��,�n� � �*
 .
On the other hand by inspection we have ������
g��� �������%� �*
 . Hence ������
l�� �%� ��
 .

(e) ������
��D�����|hK�{
���� .
Solution: �����*
���� �87:9[ \ 9?� . � � ��� j 


(f) �����*
��D����/1032
��
��s�l����

Solution: �����*
�� � ��/40323�:�*
 - By inspection and substitution.

(g) ������
�� v ���G�� ( 
��k�*�� ��
 �
Solution:

� ��� &� /4032
�*
 - By part 2 of the Master Method.

Problem 1-2. Asymptotic Notation

Rank the following functions by order of growth; that is, find an arrangement � 9 }'� � }p�p�p��}'� 9�H of the
functions satisfying � 9 ������� � 
 , � � �,����� . 
 , . . . , � 9 E �k����� 9�H 
 . Partition your list into equivalence
classes such that �x����
 and ������
 are in the same class if and only if �x���*
�� � �������*
'
 . (The function/40-2 � � is discussed on pages 55-56 of CLRS.)

� �	�G�4�#� & � �Z� \ 9 �� � � �
��� z 9 ]%]%]%] z � /4032
�
5 � �! #"%$8 #"%$ � � . ��/4032
�*
	 #"%$ �

��/4032
� �����,�{
B� �Z� \ 9 � /1032d���C��

Solution:

The following are ordered asymptotically from smallest to largest, are as follows (two functions, �
and � are on the same line if �x����
�� � ���*����
X
 ):

z 9 ]%]%]%]
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/4032�� �Z� \ 9 ��
�

��/4032
� /4032d������

�Z� \ 9 � � �
� �	�G�1�#� & �
� .

��/40-2
��
  #"%$ � �  #"%$3 #"%$ �
5 �
z �
���

�����D��
B�
Problem 1-3. Sieve of Eratosthenes

The Sieve of Eratosthenes, invented circa 200 B.C., is an algorithm to find all prime numbers
between 2 and an input number � . The algorithm works as follows: we begin with a list of all
integers from 2 to � . For each = T � , we cross out (i.e. mark as composite) each multiple of= ( �>¡�= for �¢�@5 ) that is less than or equal to � . When this process terminates, only the prime
numbers between 2 and � are unmarked.
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Below, we give pseudocode for this algorithm. At the beginning of the algorithm, every entry in
the array £ is initialized to true, i.e. £¥¤ ��¦ is true for all � }�5¥T � T�� . At the end of the algorithm,£¥¤ ��¦ is true iff � is prime.

ERATOSTHENES-SIEVE ���§
 :
1 Let £¥¤ ��¦!¨ª©	«�¬®­ for all � from 2 to � .
2 for = ¨ 5 to � :
3 � ¨ 5 .
4 while �y¡p=¯Tk� :
5 £l¤#�n¡{= ¦!¨ ��°`±6² ­ .6 � ¨ ���D� .
7 endwhile
8 endfor

The table below shows the values of the array elements £¥¤³���p�p�X� ¦ at the end of each while loop
(line 7) during an execution of the algorithm run on input �´�µ�{z .

i ¶¸·#¹�º ¶¸·#»�º ¶¼· ½pº ¶¸·#¾�º ¶¸·#¿�º ¶¼·ÁÀBº ¶¸·#Â�º ¶¸·#Ã�º ¶¼·�Ä)ÅÆº ¶¸·�Ä{Ä'º ¶¸·�Ä�¹�º ¶¸·�Ä�»�º
1 T T T T T T T T T T T T
2 T T F T F T F T F T F T
3 T T F T F T F F F T F T
4 T T F T F T F F F T F T
... T T F T F T F F F T F T
13 T T F T F T F F F T F T

Prove that the ERATOSTHENES-SIEVE algorithm is correct; that is, prove that upon termination,£¥¤ ��¦ is true iff � is prime.

Hint: You can use the following pre-condition and post-condition and you can prove the suggested
loop invariant for the for loop (line 2). Let Ç [ represent the statement: £l¤ �6¦ is true iff � is prime.

Pre-Condition: �È�,5 .
Post-Condition: Ç [ }�É � such that 5~T � TD� .

Loop Invariant: Ç [ }	É � such that 5�T � TD= .

Solution:

We will use the given loop-invariant for the for loop (line 2) and the relevant pre- and post-
conditions to prove the correctness of the algorithm.

We will now prove the given loop invariant. Namely, we will prove by induction that when = is
assigned the value

�
(line 2), Ç [ holds for all � }�5�T � T � .

When = is assigned the value 2, £¥¤Ê5 ¦ is true since it was initialized to be true. Thus, we have
proved that before we execute the for loop the first time, the base case of the loop invariant holds.
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Now we will assume that when = is assigned the value
�
, Ç [ holds for all � }�5gT � T �

. We will
use this inductive hypothesis to prove that when = is assigned the value

� �µ� , Ç [ holds for all� })5~T � T � �,� .
Let’s consider an execution of the while loop with =r� �

. Since � goes from 5 to Ë�� � =nÌ , �y¡�=
is always at least 5 � . Since only elements £¥¤ �6¦ with � ���y¡{= are (re)set to false, no element £l¤ �6¦
with � T � will change value. Thus, Ç [ for � }�5�T � T � , will hold at the end of the execution of the
while loop.

It remains to show that Ç � � 9 holds at the end of the execution of the while loop. If £¥¤ � �Í� ¦ is true,
then it cannot have any divisor Î such that 5ÏT�ÎnT � . So

� �k� must be prime. If
� �k� is prime,

then it does not have a divisor ÎÐT �
. Thus, it must be true. Thus, we have proved that the loop

invariant is correct.

When =m��� , on the final execution of the for loop, we have that Ç [ holds for all � , 5|T � T�� ,
due to the correctness of the loop invariant.


