
Introduction to Algorithms December 10, 2003
Massachusetts Institute of Technology 6.046J/18.410J
Professors Shafi Goldwasser and Silvio Micali Handout 34

Practice Final
� Do not open this exam until you are directed to do so. Read all the instructions first.� When the exam begins, write your name on every page of this exam booklet.� The exam contains 8 multi-part problems. You have 180 minutes to earn 160 points.� This exam booklet contains 14 pages, including this one. Two extra sheets of scratch paper

are attached. Please detach them before turning in your exam.� This exam is closed book. You may use two handwritten A4 or
������ ���
	�	 � � crib sheets. No

calculators or programmable devices are permitted.� Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.� Good luck!

Problem Points Grade Initials

1 12

2 18

3 27

4 20

5 16

6 21

7 26

8 20

Total 160

Name:

Circle the name of your recitation instructor:

Handout 34: Practice Final 2

Problem -1. Recurrences [12 points]

For each of the following recurrences, do the following:

� Give the solution in ������ notation.� Name a method that can be used to solve the recurrence. (Do not give a proof.)� Mention a recursive algorithm we’ve seen in class whose running time is described by that
recurrence.

(a) ���������������������
� 	 �
T(n) = �

! "

Method:

Algorithm:

(b) ����������������#����$��&%'��� 	�(���)������
T(n) = �

! "

Method:

Algorithm:

(c) ��������*%+����������,�)���� � �
T(n) = �

! "

Method:

Algorithm:

Handout 34: Practice Final 3

Problem -2. Design Decisions [18 points]

The use of algorithms often requires choices. What is efficient in one context may be suboptimal
in another. For each of the following pairs, give one reason, circumstance, or application for which
Choice 1 would be preferable to Choice 2, and vice-versa. Be succinct.

EXAMPLE: (1) insertion sort (2) merge sort

(1) Insert sort is preferrable on small arrays, or when space is a limited resource.
(2) Merge sort is preferable on large arrays, because of its asymptotically optimal -.��0/21�3����
running time.

(a) (1) randomized quicksort (2) bucket sort

(b) (1) randomized select (2) worst-case -.���� -time select

(c) (1) red-black tree (2) hash table

Handout 34: Practice Final 4

Problem -3. Short Answer [27 points]

Give brief, but complete, answers to the following questions.

(a) Suppose you are given an unsorted array 4 of � integers, some of which may be
duplicates. Explain how you could “uniquify” the array (that is, output another array
containing each unique element of 4 exactly once) in -.���� expected time.

(b) Given a list of distinct real numbers 57698:5 � 8<;�;�;<8=5<>'? � , show how to find the coefficients
of the degree- � polynomial @A�BC� that evaluates to zero only at 5+698:5 � 8�;<;�;<8:5<>+? � . Your
procedure should run in time -D��0/21�3 � ��� . (Hint: The polynomial @A�BC� has a zero at5:E if and only if @A�BC� is a multiple of FBDGH5IE<� .)

Handout 34: Practice Final 5

(c) Consider a generalization of the max-flow problem, in which the network J may have
many sources and many sinks. Explain how to reduce this problem to the conventional
max-flow problem. Specifically, describe how you would convert the generalized net-
work J to a conventional network J � , and how you would translate a maximum flow
in J � back to a maximum flow in J .

Handout 34: Practice Final 6

Problem -4. True or False, and Justify [20 points]

Circle T or F for each of the following statements, and briefly explain why. The better your
argument, the higher your grade, but be brief. Your justification is worth more points than your
true-or-false designation.

(a) T F If a problem K is in LM@ and K reduces to NPOQ4R� (KTSVUWN�O�4X�), then K isLM@ -complete. (You may assume @ZY�[LM@ .)

(b) T F If a graph has negative-weight edges, there exists a constant \ such that adding\ to every edge weight and running Dijkstra’s algorithm produces shortest paths
under the original edge weights.

(c) T F It is possible to compute the convolution of two vectors, each with � entries, in-.��0/23���� time.

(d) T F The following procedure produces a minimum spanning tree of � given points in
the plane.

Handout 34: Practice Final 7

� Sort the points by B -coordinate. (Assume that all B -coordinates are distinct.)� Connect each point to its closest neighbor among all points with smaller B
coordinate.
That is, if] � 8^] � 8<;�;�;<8&]_> denotes the sorted order of points, then for ��Sa`bS� , connect point]_c to its closest neighbor among] � 8^] � 8�;<;�;d8&]_ce? � .

Handout 34: Practice Final 8

Problem -5. Average Path Lengths in DAGs [16 points]

Instead of shortest paths in a graph, you might be interested in the average length of all paths from
a vertex f to a vertex g . In order for this to make sense, we assume that the graph Jh�T&i�8=jk�
is directed and acyclic. Let lm�no8qpr� denote the weight of edge �ns8=pt� . It suffices to compute the
total length of all paths from f to g , and the number of such paths. This problem is well-suited to a
dynamic programming approach.

(a) [8 points] Define count u Bwv to be the number of distinct paths from B to g . Define
sum u Bwv to be the sum of the lengths of all paths from B to g . Give recurrences for
count u Bwv and sum u Bwv in terms of the neighbors of B and the edge weights, and give the
bases cases as well.

(b) [8 points] Describe a dynamic-programming algorithm to solve the stated problem,
and analyze its running time. (Hint: In what order should you consider the vertices, so
that when considering vertex B , the values of count uyxzv and sum u{xzv have already been
computed for all neighbors x of B ?)

Handout 34: Practice Final 9

Problem -6. Amortized 2-3-4 Trees [21 points]

In this problem, we will analyze the amortized number of modifications made to a 2-3-4 tree
during an INSERT operation. For the purpose of this problem, assume that DELETE operations do
not occur.

(a) [3 points] Give a tight asymptotic bound on the number of nodes created or modified
during one call to INSERT, in the worst case.

(b) [6 points] Suppose we insert an element into a 2-3-4 tree, and the INSERT algorithm
splits | nodes. Give an exact (not big-O) upper bound on the number of nodes in the
tree that are created or modified in this case.

Handout 34: Practice Final 10

(c) [6 points] Let � be a 2-3-4 tree, and define a potential function

} ��V���*N � (number of “full” nodes in �)

(a node is full if it stores 3 keys).

If a call to INSERT splits | nodes, how does
} ��V� change as a result of this call?

(d) [6 points] Prove that the amortized number of nodes created or modified per INSERT

is -D 	 � .

Handout 34: Practice Final 11

Problem -7. Maximum Bottleneck Path [26 points]

In the maximum-bottleneck-path problem, you are given a graph J with edge weights, and two
vertices f and g , and your goal is to find a path from f to g whose minimum edge weight is maxi-
mized. In other words, you want to find a path from f to g in which no edge is light.

(a) [8 points] Suppose that all edges have nonnegative weights. How would you modify
a shortest-path algorithm that we covered in lecture to solve the maximum-bottleneck-
path problem?

(b) [4 points] Does your solution change if the edges have negative weights? What if
there are negative-weight cycles?

Handout 34: Practice Final 12

(c) [6 points] Suppose we do not need a path which maximizes the minimum edge
weight, but we only need a path in which every edge has at least a certain weight.
Describe an -.^i~��j�� -time algorithm for finding a path from f to g in which every
edge has least a given minimum weight lX���{� . (Such an algorithm would have been
useful in the movie Speed, in which every road traversed had to have a speed limit of
at least 50 mph.)

(d) [8 points] Describe how you can make -D�/e3�j�� calls to the algorithm in part (c) to
solve the maximum-bottleneck-path problem in -Dq&i��
j��r/e3�jk� time.

Handout 34: Practice Final 13

Problem -8. Cliquependent Graphs [20 points]

Given a graph J��Z^i�8:jk� and nonnegative integers �78If , we say that J is ��+8:f+� -cliquependent if
both of the following are true:

� there exists a subset \��ai such that � \��'�*� and, for all distinct `q8��.��\ , �`q8�������j , and� there exists a subset O
�ai such that �{OV�'�*f and, for all distinct `�8��A��O , �`q8����0Y��j .

Given a graph J and a pair ��+8If7� , the cliquependence decision problem is to determine whetherJ is ��+8:f+� -cliquependent.

(a) [3 points] Define the set CLIQUEPENDENT which contains all “yes” instances to the
cliquependence decision problem.

(b) [6 points] Show that CLIQUEPENDENT ���V� .

Handout 34: Practice Final 14

(c) [7 points] Show that CLIQUEPENDENT is NP-complete. (Hint: Reduce from either
CLIQUE or INDEPENDENT-SET .

(d) [4 points] Suppose an -D�� � 6�6 � -time algorithm were found for the cliquependence

decision problem. What would be the implications, if any, on the “P �� NP” question?

SCRATCH PAPER — Please detach this page before handing in your exam.

SCRATCH PAPER — Please detach this page before handing in your exam.

