Introduction to Algorithms December 10, 2003
Massachusetts Institute of Technology 6.046J/18.410J
Professors Shafi Goldwasser and Silvio Micali Handout 34

Practice Final

e Do not open this exam until you are directed to do so. Read all the instructions first.

e When the exam begins, write your name on every page of this exam booklet.

e The exam contains 8 multi-part problems. You have 180 minutes to earn 160 points.

e This exam booklet contains 14 pages, including this one. Two extra sheets of scratch paper
are attached. Please detach them before turning in your exam.

e This exam is closed book. You may use two handwritten A4 or 81" x 11" crib sheets. No
calculators or programmable devices are permitted.

e Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.

e Good luck!

| Problem | Points | Grade | Initials |

1 12
2 18
3 27
4 20
5 16
6 21
7 26
8 20
Total 160

Name: Solutions

Circle the name of your recitation instructor:



Handout 34: Practice Final 2

Problem -1. Recurrences [12 points]
For each of the following recurrences, do the following:

e Give the solution in O(-) notation.

e Name a method that can be used to solve the recurrence. (Do not give a proof.)

e Mention a recursive algorithm we’ve seen in class whose running time is described by that
recurrence.

(@) T(n) =T(n/2) +0O(1)

T(n) = © ( logn )
Method: Master Method
Algorithm: Binary search

(b) T(n) =T(n/5) + T(7n/10) + O(n)

T(n) = Q) ( n )
Method: Substitution
Algorithm: SELECT

(c) T(n) =7T(n/2) + O(n?)

T(n) = 0 ( O(n'e7) )

Method: by Master Method

Strassen’s matrix-

Algorithm: multiplication algorithm.




Handout 34: Practice Final 3

Problem -2. Design Decisions [18 points]

The use of algorithms often requires choices. What is efficient in one context may be suboptimal
in another. For each of the following pairs, give onereason, circumstance, or application for which
Choice 1 would be preferable to Choice 2, and vice-versa. Be succinct.

EXAMPLE: (1) insertion sort  (2) merge sort

(1) Insert sort is preferrable on small arrays, or when spaceis a limited resource.
(2) Merge sort is preferable on large arrays, because of its asymptotically optimal O(nlogn)
running time.

(a) (1) randomized quicksort  (2) bucket sort
Solution: (1) Randomized quicksort gives better worst-case running time when no
distribution is known on the input.
(2) Bucket sort is better (linear-time) when the distribution on input elements is known
to be uniform, or when randomness is not available.

(b) (1) randomized select  (2) worst-case O(n)-time select

Solution: (1) Randomized select has smaller constant factors, so it is better suited for
daily use when hard, worst-case guarantees on running time may not be needed.

(2) Linear-time select is preferred when a hard upper limit on the running time is
necessary (as in a real-time application), or when randomness is not available.

(©) (1) red-black tree  (2) hash table

Solution: (1) Red-black trees are useful for “approximate” searches, augmentation,
and guaranteed worst-case running times.

(2) Hash tables support constant time (in expectation) insertions and deletions, and
can be designed with guaranteed O(1)-time operations when the data set is known in
advance.



Handout 34: Practice Final

Problem -3. Short Answer [27 points]
Give brief, but complete, answers to the following questions.

(@)

(b)

Suppose you are given an unsorted array A of n integers, some of which may be
duplicates. Explain how you could “uniquify” the array (that is, output another array
containing each unique element of A exactly once) in O(n) expected time.

Solution: We use universal hashing to solve this problem. Create a hash table of 2n
elements, and for each element = in A, search for x in the table and insert it only if
the search fails. Then walk down the slots of the table and output every element. The
searches and insertions each take O(1) expected time, and walking down the table
takes O(n) time, for a total expected runtime of O(n).

Given a list of distinct real numbers zg, 21, . . . , z,—1, Show how to find the coefficients
of the degree-n polynomial P(z) that evaluates to zero only at z, z1, . . ., z,—1. Your
procedure should run in time O(n log®n). (Hint: The polynomial P(z) has a zero at
z; if and only if P(x) is a multiple of (z — 2;).)

Solution: We multiply all the polynomials (z — z;) together, in the following divide-
and-conquer way: recursively multiply the first n/2 linear terms, then recursively
multiply the remaining n/2 linear terms, then combine the two results by multiplying
them together using FFT. The running time is expressed by the recurrence T'(n) =
2T (n/2) 4+ ©(nlogn). By the Master Method, this solves to T'(n) = ©(nlog? n).



Handout 34: Practice Final

(c) Consider a generalization of the max-flow problem, in which the network G may have
many sources and many sinks. Explain how to reduce this problem to the conventional
max-flow problem. Specifically, describe how you would convert the generalized net-
work G to a conventional network G’, and how you would translate a maximum flow
in G’ back to a maximum flow in G.

Solution: First, make a copy of G. Then add a new “supersource” vertex s, and a new
“supersink” vertex ¢t. Connect s to every old source with infinite-capacity edges, and
connect every old sink to ¢ with infinite-capacity edges. This graph is G’. Then run a
conventional max-flow algorithm on G’ with s as the source and ¢ as the sink.

The flow produced is a max flow in G, discounting the edges between s and the old
sources, and between the old sinks to ¢. This is because it is a valid flow, and the
min-cut in G’ is the same as in G (because only infinite-capacity edges were added).



Handout 34: Practice Final 6

Problem -4. Trueor False, and Justify [20 points]

Circle T or F for each of the following statements, and briefly explain why. The better your
argument, the higher your grade, but be brief. Your justification is worth more points than your
true-or-false designation.

(@ T F If aproblem L isin NP and L reduces to 3SAT (L <p 3SAT), then L is
N P-complete. (You may assume P # NP.)
Solution: False. Every problem in P reduces to 3SAT, and if P # NP then
those problems are not N P-complete. The statement would be true if the reduc-
tion went the other way (if 3S AT reduced to L).

(b) T F If agraph has negative-weight edges, there exists a constant C' such that adding

C to every edge weight and running Dijkstra’s algorithm produces shortest paths
under the original edge weights.
Solution: False. Adding the same value to each edge “distorts” the shortest
paths, because each path becomes longer in proportion to the number of its edges.
For concreteness, suppose the shortest path between s and ¢ was 3 “hops,” and
was 1 unit shorter than the edge directly from s to ¢. Furthermore, if there was an
edge somewhere in the graph with weight -1, we would need C' > 1 for Dijkstra’s
algorithm to be correct. Adding C' to each edge causes the 1-hop path from s to
t to be the shortest.



Handout 34: Practice Final

(c0 T F Itis possible to compute the convolution of two vectors, each with » entries, in
O(nlgn) time.
Solution: True. Use polynomial multiplication via FFT,

(d) T F The following procedure produces a minimum spanning tree of n given points in
the plane.

e Sort the points by z-coordinate. (Assume that all z-coordinates are distinct.)

e Connect each point to its closest neighbor among all points with smaller z
coordinate.
That is, if py, ps, . . ., p, denotes the sorted order of points, then for 2 < i <
n, connect point p; to its closest neighbor among p1, po, - .., p;i 1.

Solution: False. Here is a counterexample: take the points (0,0), (10,100),
and (11,0) in the zy-plane. Then in the first step, the edge between (0, 0) and
(10, 100) is chosen; however, this is the longest of the three edges between points.
We know that an MST cannot contain the heaviest edge in a graph, therefore this
algorithm is incorrect.



Handout 34: Practice Final 8

Problem -5. Average Path Lengthsin DAGs [16 points]

Instead of shortest paths in a graph, you might be interested in the average length of all paths from
a vertex s to a vertex ¢. In order for this to make sense, we assume that the graph G = (V, E)
is directed and acyclic. Let w(u,v) denote the weight of edge (u,v). It suffices to compute the
total length of all paths from s to ¢, and the number of such paths. This problem is well-suited to a
dynamic programming approach.

(@) [8 points] Define count[z]| to be the number of distinct paths from x to ¢. Define
sum[z] to be the sum of the lengths of all paths from = to ¢. Give recurrences for
count|z] and sum[z] in terms of the neighbors of x and the edge weights, and give the
bases cases as well.

Solution: The paths from x to ¢ can be partitioned based on the neighbor y of z visited
first in the path. There are count[y| distinct paths to take from that point onward. The
corresponding paths from x are each w(z, y) longer. This yields the recurrences:

countlz] = ) count[y]
y:(zy)EE

sumlz] = Y (count[y] - w(z,y) + sumly]).
y:(zy)EE

The base cases are count[t] = 1 and sum[t] = 0.

(b) [8 points] Describe a dynamic-programming algorithm to solve the stated problem,
and analyze its running time. (Hint: In what order should you consider the vertices, so
that when considering vertex z, the values of count[y] and sum[y| have already been
computed for all neighbors y of x?)

Solution: We first compute a topological ordering on the vertices, relabelling them
1,...,|V], so that all edges (i,j) € E have i < j. Then we build tables for count
and sum, filling them in from V" down to 1. Values in both tables are set to 0, until
vertex ¢ is encountered, at which point we set the table entries according to the base
cases. We then use the recurrences to fill in the remaining entries. This is possible
because when computing the entries for vertex x, all neighbors y of  are greater than
x, and have had their entries computed already. After filling in the tables, we return
sum([s|/count[s] as the average.

The runtime analysis is as follows: topological sort requires ©(V + E) time. While
filling in the tables, each vertex and edge causes a constant number of math operations
to be done, for ©(V + E) time overall.



Handout 34: Practice Final 9

Problem -6. Amortized 2-3-4 Trees [21 points]

In this problem, we will analyze the amortized number of modifications made to a 2-3-4 tree
during an INSERT operation. For the purpose of this problem, assume that DELETE operations do
not occur.

(@ [3points] Give a tightasymptotic bound on the number of nodes created or modified
during one call to INSERT, in the worst case.

Solution: ©(logn) nodes could be changed, because the height of the tree is ©(log n)
and each node in the insertion path could be full and need to be split.

(b) [6 points] Suppose we insert an element into a 2-3-4 tree, and the INSERT algorithm
splits £ nodes. Give an exact (not big-O) upper bound on the number of nodes in the
tree that are created or modified in this case.

Solution: Each split creates 2 new nodes (by splitting one), and modifies the parent of
the old node (by promoting one key). In addition, the leaf node that gets the inserted
key is modified (whether or not there are any splits). This yields a total of at most
3k + 1 modified nodes (alternatively, we could say max(3k, 1)).



Handout 34: Practice Final

(c) [6 points] Let T be a2-3-4 tree, and define a potential function
#(T) = 3 x (number of “full” nodes in T’)

(a node is full if it stores 3 keys).
If a call to INSERT splits k£ nodes, how does ¢(7") change as a result of this call?

Solution: Each node that is split was full before the split, and is not full afterward. No
other full nodes are modified; however, the key that is promoted in the final split may
fill a node. Therefore the number of full nodes decreases by k& — 1, so ¢(T") decreases
by at least 3(k — 1). (Note: all of these statements remain true when &k = 0 or k = 1;
in these cases ¢ “decreases” by a small, non-positive amount.)

(d) [6points] Prove that the amortized number of nodes created or modified per INSERT
isO(1).
Solution: First, we note that ¢(7') = 0 on newly-initialized B-tree, and that ¢(7") > 0
by definition. Therefore, the amortized number of modified nodes per INSERT is the
actual number of modified nodes, plus the change in ¢(7"). This is at most 3k + 1 —
(B3k—-3)=4=0().



Handout 34: Practice Final 11

Problem -7. Maximum Bottleneck Path [26 points]

In the maximum-bottleneck-path problem, you are given a graph G with edge weights, and two
vertices s and ¢, and your goal is to find a path from s to ¢ whose minimum edge weight is maxi-
mized. In other words, you want to find a path from s to ¢ in which no edge is light.

(@) [8points] Suppose that all edges have nonnegative weights. How would you modify
a shortest-path algorithm that we covered in lecture to solve the maximum-bottleneck-
path problem?

Solution: We would like to use Dijkstra’s algorithm, where d[v] keeps a lower bound
on the maximum bottleneck weight of a path from s to v. Therefore, in the initial-
ization step, we set d[v] <— —oo for all v, and d[s] < oco. In the relaxation step, we
change + to min and change > to <. In Dijkstra’s algorithm, use a max-heap instead
of a min-heap.

(b) [4 points] Does your solution change if the edges have negative weights? What if
there are negative-weight cycles?
Solution: Neither of these are a problem. The minimum-weight edge of a path is
not changed by going around a cycle several times. Because we are only using min
instead of addition, the relative values of the edges are all that matter, not whether they
are positive or negative.



Handout 34: Practice Final

(c) [6 points] Suppose we do not need a path which maximizes the minimum edge
weight, but we only need a path in which every edge has at least a certain weight.
Describe an O(V + E)-time algorithm for finding a path from s to ¢ in which every
edge has least a given minimum weight w,;,. (Such an algorithm would have been
useful in the movie Speed, in which every road traversed had to have a speed limit of
at least 50 mph.)

Solution: We can find a path using breadth-first or depth-first search, while simply
deleting (or ignoring) edges with weight smaller than w;,.

(d) [8 points] Describe how you can make O(lg E) calls to the algorithm in part (c) to
solve the maximum-bottleneck-path problem in O((V + E) Ig E) time.

Solution: First, sort all the edges by weight (there are at most |E| unique weights).
The desired weight must be a particular edge weight, so we binary search for the
largest value of w,,;, that maintains a path from s to ¢ (using the algorithm from the
previous part to detect whether such a path exists). Specifically, start with w,;, set to
the median edge weight, then try the E'/4th or 3E /4th largest edge weight, etc.
Sorting the edge weights requires O(E'log E) time. The binary search requires
O(log E) iterations of an O(V + E)-time subroutine, so the total running time is
O((V + E)logE).



Handout 34: Practice Final 13

Problem -8. Cliquependent Graphs [20 points]

Given a graph G = (V, E) and nonnegative integers ¢, s, we say that G is (c, s)-cliquependent if
both of the following are true:

e there exists a subset C C V such that |C| = ¢ and, for all distincti,j € C, (i,7) € E, and
e there exists a subset S C V such that |S| = s and, for all distinct i, j € S, (i,7) € E.

Given a graph G and a pair (c, s), the cliquependence decision problem is to determine whether
G is (¢, s)-cliquependent.

(@ [3points] Define the set CLIQUEPENDENT which contains all “yes” instances to the
cliquependence decision problem.

Solution:

CLIQUEPENDENT = {(G, ¢, s) : G is (c, s)-cliquependent}

(b) [6 points] Show that CLIQUEPENDENT € NP.

Solution: A witness for an instance is a subset C' and a subset S which have the
properties listed above (C' is a clique of size ¢, and S is an independent set of size s).
The verification algorithm checks that there is an edge between every pair of vertices
in C, and that there are no edges between any pair of vertices in S, and accepts the
witness only if all the conditions are met. Conversely, if the verifier accepts, then C
and S have the properties describe above, and G is (¢, s)-cliquependent.

The witness is clearly polynomial-sized in the size of the instance, and the verification
algorithm runs in polynomial time.



Handout 34: Practice Final

(¢) [7 points] Show that CLIQUEPENDENT is NP-complete. (Hint: Reduce from either
CLIQUE or INDEPENDENT-SET.

Solution: We can reduce from CLIQUE: given an instance z = (G, k) of CLIQUE
(“is there a clique of size £ in G?”), the reduction outputs an instance f(z) =
(G, k,0) of CLIQUEPENDENT. Trivially, G has an independent set of size 0, so
f(z) € CLIQUEPENDENT if and only if G has a clique of size k, i.e. if and only
if z € CLIQUE. This reduction is obviously polynomial-time, and because CLIQUE is
NP-complete, so is CLIQUEPENDENT.

We can also reduce from INDEPENDENT-SET in a similar way: on input instance
x = (@, s) of INDEPENDENT-SET, the reduction outputs f(z) = (G, 0, s). Because
G has a clique of size 0, z € INDEPENDENT-SET <= f(z) € CLIQUEPENDENT.

(d) [4 points] Suppose an O(n!%)-time algorithm were found for the cliquependence
decision problem. What would be the implications, if any, on the “P < NP” question?
Solution: If such a procedure exists, then P = NP with certainty. This is because any
language in NP can be reduced to the cliquependence problem, then the algorithm in
question would correctly answer “yes” or “no.” Therefore any problem in NP could
be solved in polynomial time, implying P = NP.



SCRATCH PAPER — Please detach this page before handing in your exam.



SCRATCH PAPER — Please detach this page before handing in your exam.



