
Introduction to Algorithms December 2, 2002
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 28

Problem Set � Solutions

Problem � -1. Optimal scheduling

(a) For (1) the schedule in which task 1 runs first, followed by task 2:�������	����
 and �
�����	�����������
average completion time �����������
�
��� �!�#"$"��$�%�'&)(*&
For (2) the schedule in which task 2 runs first, followed by task 1:�
���������+& and ���������,���	�-���
average completion time �����������
�
��� �!�#".
/�$�%��01(*&

(b) Run tasks in increasing order of processing time. This can be done by sorting the
elements using heap sort or merge sort and then scheduling them in the order of in-
creasing processing times. This algorithm takes 2 �43658793�� .
This algorithm uses a greedy strategy. It is shown to be optimal as follows: ��:<;>=?�@BA4CD@4EBCD@GFHCJIKIKI CD@GLM This cost can also be expressed as N �O�P�'�Q�	�P�R�D�
�S�'�T�	�S�R���,�U��V
�S�
W.W.W �X�T�	���Y���	� W.W.W �Z� M �<[�M . Note that �	� is included 3 times, �\� appears 3^]�" times,
etc. As a result, �O� should have the shortest processing time, then �_� , etc. Otherwise,
you could cut and paste in a shorter processing time and produce a faster algorithm.
As a result, the greedy property holds and our algorithm is correct.

(c) This problem also exhibits the greedy property which can be exploited by running
tasks in increasing order of remaining processing time. Use a priority queue which
prioritizes based on the amount of time remaining. Each time a new task comes up,
insert it into the queue and if it would take less time to do that task then the one you
are on, do the shorter task. Each time you finish a task, the next task you should do
is the one with the least remaining time until completion. The priority queue can be
maintained in 2 �G365`7�3O� time.

This algorithm minimizes the average completion time and the proof is similar to the
one in the previous part. If we do not schedule using the greedy algorithm based on
remaining processing time, then we will be able to swap two time slots which would
then improve the sum of the completion times and thus result in a contradiction. For
example, assume you have two tasks at time a , where task b has c processing time
remaining and d has e processing time remaining where cgfhe . Assume for the
purposes of contradicction that the optimal answer has task b running before task d . If
b is done before d then �jiJ� a � c and �lk�� a � c � e . The average completion time is�Bm C �Bn Cpo� . However if d were done before b , then �ji�� a � e � c and �>k!� a � e . The
average completion time is now

�Bm C � oqC n� which is less the average completion time
for the “optimal” solution since c�fre . As a result, the task with the lowest time
remaining should be done first.

2 Handout 28: Problem Set � Solutions

Problem � -2. Paintball routes

We assume the probabilities that each bridge will fail are independent. The probability ��� that a
path with edges of failure probabilities ����� ����� W.W.W � ��� will not fail is ��� � �<"] �J��� �>",] ���j� W.W.W �>"]
����� . Therefore, the probability of failure �
	 is "] ��� . We want to minimize ��	 for the nodes in
the graph, so we can do something akin to a shortest paths algorithm, which attempts to minimize
the failure probability. In fact, we can reduce the problem to a classical shortest path problem with
nonnegative weights by observing that minimizing ��	 is equivalent to minimizing] 5
�$7\� �
� � �� �i��J�] 5
�$7\�<"] �DiG� . Setting the weight of an edge to be ��� �] 5
�$7�� ����� , we observe that a
path of minimum failure probability is a path of minimum total weight (with respect to the weights
���). We could thus simply apply Dijkstra with the weights ��� . Since we haven’t really discussed
whether our computational model allows the computation of logarithms we can simply modify
Dijkstra to work directly on the � � ’s instead of the ��� ’s but perform exactly the same updates
as Dijkstra’s algorithm would do on the ��� ’s. Correctness will simply follow from Dijkstra’s
correctness. Our variant of Dijkstra’s algorithm will maintain estimates on the failure probabilities
which we will relax. Here is the pseudocode.

NOT-FALL(� � � ���)
1 Initialize-NF-Single-Source(� ���)
2 � � !#"%$
3 &'� (?N)� [
4 while &�*� !+"%$
5 do ,-� EXTRACT-MIN � & �
6 � � �/.102,43
7 for each vertex 576/8:9Hd_N), [
8 do NF-RELAX � , � 5 � � �

INITIALIZE-NF-SINGLE-SOURCE(� ���)
1 for each vertex 5;6<(N=� [
2 do 9_N)5 [� "
3 � b N>5 [� !#"%$
4 9JN � [� �

NF-RELAX(, � 5 � �)
1 if 9_N>5 [f "]��>"] 9_N>, [� �>"] � � , � 5 ���
2 then 9_N)5 [� "]��>"] 9_N), [� �<"] � � , � 5 �l�
3 ? N>5 [� ,

Running time and correctness follow directly from Dijkstra’s algorithm as stated earlier by using

Handout 28: Problem Set � Solutions 3

the relationship between � � and ��� .
Problem � -3. Computing partial mins

(a) We first note that if we could maintain a data structure that supports INSERT , DELETE

and FIND-MIN in 2 �G5`7-3�� (3 being the number of elements in the data structure), then
we would be done. This is because we could then store all the elements visible through
the window in this data-structure. mins NKb [can be computed by FIND-MIN, and sliding
the window could be performed by a DELETE followed by INSERT.

These operations can be performed by a balanced BST like AVL-trees or Red-Black
trees. INSERT and DELETE take 2 �4587-3�� time on a balanced BST. FIND-MIN can
be performed in 2 �G5`7-3O� time on a BST by going along the left spline of the tree
till we can go no more. To start with, the balanced BST can be built for the first
position of the window in time 2 ����5`7�� � . And then computing mins NKb [followed by
a sliding involves the 3 operations FIND-MIN, DELETE and INSERT, all of which can
be done in 2 �4587�� � time. Hence the total time to compute the array mins in the manner
specified is 2 ���+587�� �P�+�43Z]�����"�� 2 �G5`7�� ��� 2 �43%5`7�� �

(b) The worst case time taken by SLIDE is when the outgoing element is green. In this
case the sub-routine COLOR-RED is executed which takes 2 ��� � time, because it has
to color all the � elements in the window red. The other operations in SLIDE take
2 �>"�� time. Hence, the worst case time taken to compute the value of a single element
of the array mins is 2 ��� � .

(c) We observe that each element of the entire array 8 is colored green and then red at
most once. Moreover, the COLOR-RED function takes time 2 �>".� for each element
that it colors red. Since each element is colored red at most once, the sum of the times
taken by all the calls to COLOR-RED is at most 2 �G3�� . Each time SLIDE is called, its
operations (other than the call to COLOR-RED) take 2 �<"�� time. It can easily be seen
that all other operations performed by COMPUTE-MINS take only time 2 �G3�� on the
whole. Hence the total time taken by the entire algorithm is 2 �43�� . Thus the amortized
time taken to compute the minimum for each set of � consecutive elements is

��� M	�M�

�,C �
which is 2 �>".� since ���63O�$� .

Problem � -4. Weird Multiplication

We build three tables � ���S� � N �Zi k ���S�H[of boolean values, where �U������� � � and "�� b � d � 3 .
The value �Zi k ����� will be " if it is possible to parenthesize c i (�(�(c k in such a way that the value of
the resulting expression is � , and � otherwise. The initial conditions are � i*i<���S� � " iff c i ��� .
The recurrence for, say, �Yi k ���)� , where "�� b � d �#3 , is obtained from the multiplication table.
We note that there are three entries equal to � in the table; specifically �)� ��� , �
� ��� and ��� ��� .
So

�?i k ���)� � �� k
 �
���pi �?i �/���)�"!#�-� C �%$ k �4� �%&')(�� k
 �

���pi �?i��/���j�"!#�-� C �%$ k ��� �*&'+(�� k
 �
���pi �?i��$��� �"!#�-� C �%$ k ���)�%&'�(

4 Handout 28: Problem Set � Solutions

The recurrences for �Zi k ���j� and �?i k �4� � are similar. It is easy to turn this into an 2 �43 V � algorithm
which computes the entire contents of the three tables. The value we are looking for is �U� M ���)� .

