
Introduction to Algorithms November 27, 2002
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 25

Problem Set �

This is a make-up problem set, only for students who are missing several problems. It is due to
your TA on Monday, December 2.

Mark the top of each sheet with your name, the course number, the problem number, your
recitation section, the date, and the names of any students with whom you collaborated.

Each problem should be done on a separate sheet (or sheets) of three-hole punched paper.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up
should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of your essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudocode.

2. At least one worked example or diagram to show more precisely how your algorithm works.

3. A proof (or indication) of the correctness of the algorithm.

4. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Graders will be instructed to take off points for convo-
luted and obtuse descriptions.

Problem � -1. Suppose you are given a set � of � tasks, where task � requires ��� units of pro-
cessing time to complete, once it has started. You have one computer on which to run these tasks,
and the computer can run only one task at a time.

A schedule assigns which tasks to run during what times on the computer. For any schedule, let �	�
denote the completion time of task � , that is, the time at which task � completes processing. Your
goal is to find a schedule that minimizes the average completion time, that is, one that minimizes

�

��
����

�����

(a) Suppose there are two tasks with ������� and ������� . Consider (1) the schedule in
which task 1 runs first, followed by task 2 and (2) the schedule in which task 2 runs
first, followed by task 1. In each case, state the values of ��� and ��� and compute the
average completion time.

(b) Give an algorithm that schedules the tasks so as to minimize the average completion
time. Each task must run nonpreemptively, that is, once task � is started, it must run
continuously for ��� units of time. Prove that your algorithm minimizes the average
completion time, and state the running time of your algorithm.

2 Handout 25: Problem Set �

Suppose now that the tasks are not all ready at once. Specifically, each task has a release time ���
before which it is not available to be processed. Suppose also that we allow preemption, so that
a task can be suspended and restarted at a later time. For example, a task � with processing time
� � � � may start running at time 1 and be preempted at time 4. It can then resume at time 10 but
be preempted at time 11 and finally resume at time 13 and complete at time 15. Task � has run for
a total of 6 time units, but its running time has been divided into three pieces.

(c) Give an algorithm that schedules the tasks so as to minimize the average completion
time in this new scenario. Prove that your algorithm minimizes the average completion
time, and state the running time of your algorithm.

Problem � -2. You and your friends thought that playing Paintball over a network of platforms
situated in the jungle would be a good way to forget about 6.046 for a few hours. No such luck!
The platforms are connected by rickety bridges, each of which has some probability of failure (the
bridges fail independently of each other). As every Paintballer knows, the goal of each player is
to get from platform � to platform � in one piece in order to gain a better defensive or offensive
position. You’ve created a graph with each platform as a node and each bridge as an edge in order
to better analyze your situation.

Give a polynomial-time algorithm to find paths from a specified node � to all other nodes, so that
every path has minimum failure probability (a path fails if any of the bridges on that path fail).

Problem � -3. We are given an input array � of length � and an integer � such that ��� �	��
 .
We have to compute the array mins defined as follows:

mins � ���������������� �������� ���
 ��	�	� ������� ��� �"!
 $#%� for all

'& � & �(!)�*�

A naive approach to this would be to calculate the minimum for each set of � elements inde-
pendently. This takes +-,$�/. time for the computation of each mins � �$ and hence the total time to
produce the entire array mins would be at least , �0!��)�
 .1+-,2�/. �3+-,4, �0!��/.5�/.6� which is +-, ���/.
for �7� �8��
 . In this problem, we would like to build an algorithm that does better.

A useful way to view the problem is to imagine sliding a window of size � across the input array � .
(See Figure 1.) We can have �0!��)�
 different positions for the window; the first position consists
of integers ���
 ������9
:��	�	� �;�����<�= , the second position consisting of elements ���>
:������ �?��	�	�	�;�����@�A�
 , and so on. For each position of the window, we would like to find the minimum of all the
elements in the window.

(a) To begin with, describe an algorithm that computes the array mins in time B=, �DC�EF�/. .

We now describe an algorithm that takes B=,
 . amortized time to compute a single element of the
array mins.

We color the elements in a window either red or green in a fashion mentioned below. We also
maintain two minima: min-red, which is the minimum value among all the red-colored elements in

Handout 25: Problem Set � 3

n

m

Window

Input Array

Figure 1: Problem 6-3: Window on an array of numbers

the window, and min-green, which is the minimum value of all the green-colored elements in the
window. Thus, the overall minimum in the window is the minimum of min-red and min-green. (See
COMPUTE-MINS:line 8 below.) Each red-colored element carries with it a field min-ahead, which
is the minimum value among all the red-colored elements ahead of it in the window. However, the
green-colored elements do not carry with them any such field.

Whenever the window slides past an element (performed by subroutine SLIDE), the incoming
element is colored green (SLIDE:line 1) and min-green is updated (SLIDE:line 2). If the outgoing
element is red, we can easily update min-red based on the value of min-ahead of the outgoing
red-element. However, if the outgoing element is green, we then color all the elements in the
window red (see subroutine COLOR-RED) and update min-ahead of all the elements in the window.
Initially, all the elements in the first window (ie., elements ���
 �4���>
: � �	�	���4���@�=) are colored green
and both mins �
 and min-green are set to the value of the minimum element in the first window
(COMPUTE-MINS :lines 2-5). The pseudo-code for the algorithm is given below.

COMPUTE-MINS ,2� � � ���/.
1 min-green � �
2 for � �

to �
3 do color � �� � green
4 min-green � �����	, min-green ����� �� .
5 mins �
 � min-green
6 for � � �*�
 to �
7 do SLIDE , � .
8 mins � �8!)�*�
 � � � �8, min-red � min-green .

4 Handout 25: Problem Set �

SLIDE , � .
1 color � �$ � green
2 min-green � �����	, min-green �4��� �� .
3 if ��� � ��� � �8! �=�� green
4 then COLOR-RED , � .
5 min-red � min-ahead � �8!)�=

COLOR-RED , � .
1 min-green � �
2 min-red � �
3 for � � � downto �8!)�
4 do color � � � red
5 min-ahead � �� � min-red
6 min-red � � � �8, min-red ����� ��)

(b) What is the worst case time taken to compute the value of a single element of the array
mins (i.e., what is the worst case time taken by SLIDE)?

(c) Show that the time taken by the entire algorithm is B , �8. and thus the amortized cost
to find the minimum for each set of � consecutive elements is B ,
 . .

Problem � -4. Let � be the alphabet ��� ��� ��� # , and suppose the elements of � have the following
multiplication table:

Right Hand Symbol

Left Hand Symbol

a b c
a b b a
b c b a
c a c c

Note that this multiplication is neither associative nor commutative.

Give an efficient dynamic programming algorithm that examines a string 	 �
	 � �	�	��	 � of charecters
of � and decides whether or not it is possible to parenthesize 	 in such a way that value of the
resulting expression is � . For instance, if 	 �������� , your algorithm should return “yes” because
,��:,����6.1.�,��� . ��� . (This expression is not unique. For example, ,��:,��:,��?,��� .1.4.1. ��� as well.) Analyze
the running time in terms of � . Explain how to modify your algorithm to return a parenthesization
that yields � , if one exists.

