Problem Set 9 (Optional)

This problem set is not due; it is optional.

Reading: Chapter 34

Problem 9-1. Prove that the following problems are in NP:

(a) $D_1 = \{ (G, u, v, k) |$ there exists a simple path in G between u and v, of length at least k $\}$

(b) $D_2 = \{ G |$ it is possible to assign one of three “colors” to each vertex of G such that no two neighboring vertices are assigned the same color $\}$

Problem 9-2. A subgraph of a graph $G = (V, E)$ is a graph $G' = (V', E \cap (V' \times V'))$ where $V' \subseteq V$; i.e. it is a subset of the vertices together with all the edges of the original graph which are incident to these vertices.

Consider the problem LARGESTCOMMONSUBGRAPH: Given two graphs G_1 and G_2 and an integer k, determine whether there is a graph G with $\geq k$ edges which is a subgraph of both G_1 and G_2. (Hint: Reduce from CLIQUE.)

Problem 9-3. A perfect matching in an undirected graph $G = (V, E)$ is a collection of edges E' such that each node has exactly one edge of E' incident to it. (In other words, the degree of each node in $G' = (V, E')$ is exactly one.) Given a weight $w(i, j)$ on each edge (i, j), there is an $O(n^3)$ algorithm to find a perfect matching in G of minimum total weight; you may use such an algorithm as a subroutine in your solution to the following problem, without worrying about how it works.

Give an algorithm for the traveling salesman problem with triangle inequality that produces a solution within a factor of 3/2 of the optimal one. (Hint: The key to the first algorithm given in class is to convert a minimum spanning tree to an Eulerian graph, and then shortcut that to obtain a tour; find a way to do this in a less expensive way by using matching.)

Problem 9-4. Here we will see how a decision algorithm for an NP-complete problem can be used to efficiently find a witness for that problem (and others).

(a) Prove that if CLIQUE $\in P$, then there is a polynomial-time algorithm that takes a graph G and an integer k and finds a clique in G of size $\leq k$ if one exists, and outputs “NONE” otherwise.

(b) Under the same assumption (CLIQUE $\in P$), prove that there is a polynomial-time algorithm that takes a set of n cities and the distances between them and finds a minimum length traveling salesman tour through all the cities.
Problem 9-5. Consider the following definition of a randomized reduction:

\(A \leq_R B\) if there exists a polynomial time function \(f\) and a constant \(k\) such that

\[
\begin{align*}
\bullet & \quad x \in A \Rightarrow \forall y \in \{0, 1\}^{\lceil |x| \rceil}, \ f(x, y) \in B \\
\bullet & \quad x \not\in A \Rightarrow Pr[f(x, y) \in B] \leq 1/2 \text{ (probability taken over choice of } y \in \{0, 1\}^{\lceil |x| \rceil})
\end{align*}
\]

(One way to interpret this definition is that \(y\) represents some random choices used in the reduction. That is, rather than letting \(f\) make random choices on its own, we give it a random string \(y\) to use for this purpose.)

Now, suppose \(A \leq_R B\), where \(B \in P\) (i.e., \(B\) has a poly-time algorithm). Describe a randomized (polynomial time) algorithm for \(A\) that is correct with probability at least \(1 - 1/2^{100}\).