
Introduction to Algorithms December 8, 2002
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 32

Problem Set 8 Solutions

Problem 8-1. Arbitrage and Exchange Rates

This problem is analagous to the various shortest-path problems, with the following differences:

1. Instead of summing weights along paths, the exchange rate from � to � along a path is given
by the product of the edge weights along that path. As such, we are interested in largest-
product paths.

2. Instead of negative-weight cycles causing shortest paths to be undefined, cycles with product
greater than 1 cause largest-product paths to be undefined.

A similar optimal substructure property is maintained, by a cut-and-paste argument: on any largest-
product path from � to � , every sub-path is also a largest-product path between its endpoints. In
both parts of this problem, we will simply modify existing shortest-path algorithms to correspond
with this substructure property.

(A clever mathematical trick allows us to convert directly from a largest-product paths problem to
a shortest paths problem: on a graph with edge weights � , construct new edge weights � �

such that� �����	��

����������� � ���	��

�
. By properties of logarithms (monotonicity and

������������������� �!�#"$�%� �&�
),

a shortest path under � � is a largest-product path under � . This is because if the length of a path
under � � is ' , then the product of that path under � is (*),+
-/.0. . Minimizing ' maximizes (*),+ 1 .
Caveat: This technique (which would work in practice) technically requires an infinite-precision2 � (� -time algorithm for taking logs, which doesn’t actually exist. However, a solution employing
these ideas will receive full credit.)

(a) We modify the Bellman-Ford algorithm to detect cycles having product greater than 1
(such a cycle is necessary and sufficient for performing arbitrage). This requires us to
change the code of INITIALIZE-SINGLE-SOURCE to initialize 3546�8759) for all � , then
to set 354;:<7=9 (. We also modify RELAX to test if 354>��7@?A354 � 7CBD� � � � � � , and if so, to set354>��7E9 354 � 7�BC� � � � � � . Similarly, at the end of the Bellman-Ford algorithm, we check
for each edge

� � � � � whether 354>�87F?G354 � 7�BH� � � � � � , and if so, output “ARBITRAGE.”
The running time of this algorithm is same as that of Bellman-Ford, i.e. I �/JLKM�

.

(For the log-trick described above, we merely run Bellman-Ford with � �
, and output

“ARBITRAGE” if there is a negative-weight cycle.)

(b) We suitably modify any all-pairs shortest path algorithm, e.g. Floyd-Warshall: simply
replace line 6 with 3ONQPSRT6U 9 VXWHY[Z\3,NQP +^] RT6U � 3,N_P +^] RT P BC3,N_P +^] RP U ` . Also, modify the definition
of the original ab4 �\��
 7 to be (if

�c�$

, � �d�\��

�

if
�fe�g

and
�d�\��

�ihjK

, and 0 otherwise
(
���\�k
l�mehnK

).

2 Handout 32: Problem Set 8 Solutions

We could also modify Johnson’s algorithm to find a constant multiple of each ex-
change rate (instead of an additive term) so that every rate is at most 1 (instead of
non-negative), then run a modification of Dijkstra’s algorithm.

(For the log-trick described above, we merely run any all-pairs shortest path algorithm
with � � as the edge weights.)

To determine the best exchange paths, we simply use the predecessor matrix � in a
similar way as for shortest paths.

Problem 8-2. Minimum Path Covers

(a) Suppose we construct
� �

from
�

as described in the problem statement, where all
the edges have capacity 1. We first note that there is a correspondence between path
covers in

�
and integral flows in

� �
(those for which the flow through every edge is

an integer): for each path
���] � ���*������� � ���i� in a cover, for each

M� (�������<�	� � (we can
push a unit of flow from
�� to
 T�
 , to � T�
���� , to ��� . This is an allowable flow because
the paths are node-disjoint (and therefore edge-disjoint as well), so at most one unit of
flow goes through each vertex and edge in

� �
.

Conversely, for any integral flow in
� �

, every edge is either fully saturated or unused
(because capacities are 1). For each

�
 T � � U � that is saturated, take the edge
���	��

�

in
�

.
Now for every vertex

�
, there is at most one selected edge entering

�
, and at most one

exiting
�

(this is because only one unit of flow can go through
 T , and similarly for � T).
Because

�
is acyclic, the set of edges has no cycles, and forms a path cover (where a

vertex that is not incident to any of the selected edges belongs to its own path of length
0). The number of separate paths (components) is � J � ���

, where
�

is the number of
selected edges (also the flow that we started with).

Therefore we have established that every integral flow of
�

units corresponds to a path
cover having � J � ���

paths, and vice versa. Then by finding a maximum flow and
selecting the edges as above, we end up with a minimum path cover.

(b) The above algorithm does not work on graphs that have cycles. The problem is that
some of the saturated edges in the flow may correspond to a cycle in the original graph,
which cannot be part of a path cover. For concreteness, take a cycle on two nodes and
run the above algorithm. The flow will be 2 units, but there clearly cannot be a path
cover of � J � ��� �) paths.

(In fact, this problem is known to be ��� -hard, meaning that a polynomial-time algo-
rithm for it would be a very surprising result.)

