Introduction to Algorithms December 8, 2002
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 32

Problem Set 8 Solutions

Problem 8-1. Arbitrage and Exchange Rates
This problem is analagous to the various shortest-path problems, with the following differences:

1. Instead of summing weights along paths, the exchange rate from « to v along a path is given
by the product of the edge weights along that path. As such, we are interested in largest-
product paths.

2. Instead of negative-weight cycles causing shortest paths to be undefined, cycles with product
greater than 1 cause largest-product paths to be undefined.

A similar optimal substructure property is maintained, by a cut-and-paste argument: on any largest-
product path from « to v, every sub-path is also a largest-product path between its endpoints. In
both parts of this problem, we will simply modify existing shortest-path algorithms to correspond
with this substructure property.

(A clever mathematical trick allows us to convert directly from a largest-product paths problem to
a shortest paths problem: on a graph with edge weights w, construct new edge weights w’ such that
w'(i,j) = —logw(i, 7). By properties of logarithms (monotonicity and log(ab) = loga + logb),
a shortest path under w' is a largest-product path under w. This is because if the length of a path
under w’ is ¢, then the product of that path under w is 10=¢*. Minimizing ¢ maximizes 10~%.
Caveat: This technique (which would work in practice) technically requires an infinite-precision
O(1)-time algorithm for taking logs, which doesn’t actually exist. However, a solution employing
these ideas will receive full credit.)

(a) We modify the Bellman-Ford algorithm to detect cycles having product greater than 1
(such a cycle is necessary and sufficient for performing arbitrage). This requires us to
change the code of INITIALIZE-SINGLE-SOURCE to initialize d[v] < 0 for all v, then
to set d[s] « 1. We also modify RELAX to test if d[v] < d[u]-w(u,v), and if so, to set
d[v] < d[u] - w(u,v). Similarly, at the end of the Bellman-Ford algorithm, we check
for each edge (u, v) whether d[v] < d[u] - w(u,v), and if so, output “ARBITRAGE.”
The running time of this algorithm is same as that of Bellman-Ford, i.e. ©(V E).

(For the log-trick described above, we merely run Bellman-Ford with w’, and output
“ARBITRAGE?” if there is a negative-weight cycle.)

(b) We suitably modify any all-pairs shortest path algorithm, e.g. Floyd-Warshall: simply
replace line 6 with df}’ « max (d ™", diy ™" - df5 ™). Also, modify the definition
of the original Wi, j]tobe 1 ifi = j, w(i, 5) if i # j and (4,) € E, and 0 otherwise
((2,5) € E).

2 Handout 32: Problem Set 8 Solutions

We could also modify Johnson’s algorithm to find a constant multiple of each ex-
change rate (instead of an additive term) so that every rate is at most 1 (instead of
non-negative), then run a modification of Dijkstra’s algorithm.

(For the log-trick described above, we merely run any all-pairs shortest path algorithm
with w' as the edge weights.)

To determine the best exchange paths, we simply use the predecessor matrix 7 in a
similar way as for shortest paths.

Problem 8-2. Minimum Path Covers

(a) Suppose we construct G' from G as described in the problem statement, where all
the edges have capacity 1. We first note that there is a correspondence between path
covers in G and integral flows in G’ (those for which the flow through every edge is
an integer): for each path (i1, iy, ..., ;) inacover, foreach j = 1,...,m — 1 we can
push a unit of flow from z, to z;;, to ;. ,, to yo. This is an allowable flow because
the paths are node-disjoint (and therefore edge-disjoint as well), so at most one unit of
flow goes through each vertex and edge in G'.

Conversely, for any integral flow in G’, every edge is either fully saturated or unused
(because capacities are 1). For each (z;, y;) that is saturated, take the edge (¢, j) in G.
Now for every vertex i, there is at most one selected edge entering 7, and at most one
exiting 7 (this is because only one unit of flow can go through x;, and similarly for ;).
Because G is acyclic, the set of edges has no cycles, and forms a path cover (where a
vertex that is not incident to any of the selected edges belongs to its own path of length
0). The number of separate paths (components) is |V | — f, where f is the number of
selected edges (also the flow that we started with).

Therefore we have established that every integral flow of f units corresponds to a path
cover having |V| — f paths, and vice versa. Then by finding a maximum flow and
selecting the edges as above, we end up with a minimum path cover.

(b) The above algorithm does not work on graphs that have cycles. The problem is that
some of the saturated edges in the flow may correspond to a cycle in the original graph,
which cannot be part of a path cover. For concreteness, take a cycle on two nodes and
run the above algorithm. The flow will be 2 units, but there clearly cannot be a path
cover of |V| — f = 0 paths.

(In fact, this problem is known to be N P-hard, meaning that a polynomial-time algo-
rithm for it would be a very surprising result.)

