Problem Set 7 Solutions

(Exercises were not to be turned in, but we’re providing the solutions for your own interest.)

Exercise 7-1. When n is a power of 3, we divide each polynomial into three parts, grouping coefficients for those terms having degrees 0, 1, and 2 mod 3. Formally, $A(x) = A_0(x^3) + x A_1(x^3) + x^2 A_2(x^3)$, where A_i has the coefficients of A for only those terms have degrees that are i mod 3. The recurrence for the new algorithm is $T(n) = 3T(n/3) + \Theta(n)$, which by the Master Theorem solves to $T(n) = \Theta(n \log n)$.

Exercise 7-2. The total running time for the ith operations, where i is a power of 2, is $1 + 2 + \cdots + 2^{\lceil \log n \rceil} = 2^{\lceil \log n \rceil + 1} - 1 = \Theta(n)$. The total running time of the other operations is $n - \lceil \log n \rceil$. Therefore the amortized cost per operation is $\Theta(1)$.

Exercise 7-3. The potential function is (a constant multiple c of) the sum of the depths of all the nodes in the heap. We sketch why this works: for \textsc{insert}, the actual amount of work done is $\Theta(\log n)$, and the potential function increases by $\Theta(\log n)$ because a new element is added to the tree. For \textsc{delete-min}, the actual work done is again $\Theta(\log n)$ plus $O(1)$. However, the potential decreases by $c \log n$ because an element is removed. If we choose c to match the constant hidden in the $\Theta(\log n)$, then the decrease in potential cancels out the real work that is done, leaving $\Theta(1)$ amortized cost.

Note that this result is just the result of “clever accounting,” and not anything earth-shattering. In any application of a min-heap, the number of \textsc{insert} operations must be at least the number of \textsc{delete-min} operations, so the running time is dominated by the insertions.

Exercise 7-4. To compute the transpose for an adjacency-list representation, we make a new array of adjacency lists for G^T. We walk down each adjacency list of G. On the list for node u, when encountering a node v, we add u to the front of v’s list in G^T. Each step takes $O(1)$ time, so the total time is $O(V + E)$.

For an adjacency-matrix representation, we merely need to compute the transpose matrix. This can be done in $O(V^2)$ time.

Exercise 7-5. (Trivia: this problem is otherwise known as “testing whether a given graph is bipartite.”) The wrestlers correspond to nodes in a graph, and their rivalries correspond to edges. Pick an arbitrary vertex s and run a breadth-first search from s to produce a vector d of shortest path lengths from s. (If the graph is unconnected, run BFS on each of its components.) Then iterate over the edges: if (u, v) is an edge and $d[u]$ and $d[v]$ have the same parity (i.e., both even or both odd), then output “no designation.” If every edge passes this test, output all u such that $d[u]$ is even as the good guys, and all v such that $d[v]$ is odd as the bad guys.

First, note that if all the edge tests are passed, then the designation is a proper one, because every rivalry is between a good and bad guy. Now suppose some test is not passed for an edge (u, v): in
any designation, \(u \) and \(v \) must be of the same type because they are the same number of “hops” from \(s \). But this means the rivalry between \(u \) and \(v \) is not satisfied. Thus, there is no valid designation.

The running time is clear: BFS takes linear time \(O(n + r) \), and iterating over the edges takes \(O(r) \) time, for \(O(n + r) \) total.

Exercise 7-6. The graph is on four vertices \(s, t, u, v \), where \(w(s, u) = 4 \), \(w(s, t) = 2 \), \(w(u, t) = -2 \), and \(w(t, v) = 1 \). Starting from \(s \), we set \(d[t] = 2 \) and \(d[u] = 4 \). Therefore \(t \) is extracted, so we set \(d[v] = d[t] + 1 = 3 \). Next \(v \) is extracted, and no changes are made to \(d \). Finally \(u \) is extracted, and we set \(d[t] = d[u] + -2 = 2 \), then the algorithm terminates. Note that the shortest path to \(v \) is \(s, u, t, v \), and has length 3. However, at the end of the algorithm, \(d[v] = 4 \) (corresponding to the path \(s, t, v \)).

The proof of Theorem 24.6 fails where (on page 598, end of second paragraph) it claims that \(\delta(s, y) \leq \delta(s, u) \) “because \(y \) occurs before \(u \) on a shortest path from \(s \) to \(u \) and all edge weights are nonnegative.” In fact, we see in the above example that this is not the case: the shortest path from \(s \) to \(t \) is \(s, u, t \) and has length 2, but the shortest path from \(s \) to \(u \) has length 4. Therefore the proof of correctness is no longer sound.

Problem 7-1. Maximum Spanning Tree

We note that this problem is very similar to the minimum spanning tree problem. One correct solution involves a direct transformation, by negating all the edge weights of \(G \) and running Prim’s (or Kruskal’s) algorithm on the resulting graph \(G’ \). (These algorithms work properly even with negative edge weights.) A minimum spanning tree on \(G’ \) is a maximum spanning tree on \(G \), because a tree in \(G’ \) is a tree in \(G \) and vice versa, and because the weight of a tree in \(G’ \) is negated in \(G \).

Another way to solve this problem is by noticing a greedy-choice property, similar to that of the minimum spanning tree (and proven in a very similar way): in any maximum spanning tree \(T \), if we remove an edge \((u, v) \) to yield two trees \(R, S \), then \(R \) and \(S \) are maximum spanning trees on their respective vertices, and \((u, v) \) is a heaviest edge crossing between those sets of vertices. With this in mind, we can use Prim’s algorithm with a max-heap, or Kruskal’s algorithm with the edges sorted in descending order of weights, to find a maximum spanning tree. The running times remain unchanged.

Problem 7-2. Toeplitz Matrices

(a) The sum is Toeplitz. If we are adding matrices \(A \) and \(B \) (with entries \(a_{i,j} \) and \(b_{k,j} \), respectively), then the sum \(C \) (with entries \(c_{i,j} \)) has

\[
c_{i,j} = a_{i,j} + b_{k,j} = a_{i-1,j-1} + b_{i-1,j-1} = c_{i-1,j-1}
\]

as desired.
The product is not necessarily Toeplitz. Here is a counterexample:

\[
\begin{pmatrix}
1 & 2 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
2 & 1
\end{pmatrix} = \begin{pmatrix}
5 & 2 \\
2 & 1
\end{pmatrix}
\]

(b) Note that there are only $2n - 1$ diagonals in an $n \times n$ matrix, and the values on a diagonal are all the same. Therefore we need only a $(2n - 1)$-coordinate vector to represent an $n \times n$ Toeplitz matrix. Specifically, the vector is a tuple of the elements $a_{1,n}, a_{1,n-1}, \ldots, a_{1,1}, a_{2,1}, \ldots, a_{n,1}$. Adding two matrices is done by adding their representative vectors, entry-by-entry. This takes only $O(n)$ time (and space).

(c) Let the input vector be a column vector $\vec{b} = (b_1, \ldots, b_n)^T$, and call the product $c^r = (c_1, \ldots, c_n)^T$. Suppose also that we are representing the Toeplitz matrix A by the vector \vec{a} described above. Then by the definition of Toeplitz and matrix multiplication, we have

\[
c_i = \sum_{j=1}^{n} a_{n+i-j}b_j = \sum_{j=1}^{2n-1} a_{n+i-j}b_j,
\]

where we adopt the convention that $b_j = 0$ when $j > n$, and $a_j = 0$ when $j \leq 0$. But now we see that the coefficient c_i is just the coefficient of the degree-$(n + i)$ term of the product of polynomials a and \vec{b}, whose representations are given in coefficient form by the vectors \vec{a}, \vec{b}. These polynomials have degree $O(n)$, so we can multiply them in $O(n \log n)$ time, as desired.

Problem 7.3. Amortized Queues

(a) The total work is $3 + (6 + 2) + 3 + (1 + 6 + 1) = 22$. At the end, S_1 has 0 elements, and S_2 has 2.

(b) An insertion always takes 1 unit, so our worst-case cost must be caused by a removal. No more that n elements can ever be in S_1, and no fewer than 0 elements can be in S_2. Therefore the worst-case cost is $2n + 1$: $2n$ units to dump, and one extra to pop from S_2. This bound is tight, as seen by the following sequence: perform n insertions, then n removals. The first removal will cause a dump of n elements plus a pop, for $2n + 1$ work.

(c) The tightest amortized upper bounds are 3 units per insertion, and 1 unit per removal. We will prove this 2 ways (using the accounting and potential methods; the aggregate method seems too weak to employ elegantly in this case). (We would also accept valid proofs of 4 units per insertion and 0 per removal, although this answer is looser than the one we give here.)

Here is an analysis using the accounting method: with every insertion we pay 3: 1 is used to push onto S_1, and the remaining 2 remain attached to the element just inserted. Therefore every element in S_1 has 2 attached to it. With every removal we pay 1, which will (eventually) be used to pop the desired element off of S_2. Before
that, however, we may need to dump S_1 into S_2; this involves popping each element off of S_1 and pushing it onto S_2. We can pay for these pairs of operations with the 2 attached to each element in S_1.

Now we analyze the structure using the potential method: let $|S_i|$ denote the number of elements in S_1 after the ith operation. Then the potential function ϕ on our structure Q_i (the state of the queue after the ith operation) is defined to be $\phi(Q_i) = 2|S_i|$. Note that $|S_i| \geq 0$ at all times, so $\phi(Q_i) \geq 0$. Also, $|S_0| = 0$ initially, so $\phi(Q_0) = 0$ as desired.

Now we compute the amortized costs: for an insertion, we have $S_{i+1}^i = S_i^i + 1$, and the actual cost $c_i = 1$, so

$$\hat{c}_i = c_i + \phi(Q_{i+1}) - \phi(Q_i) = 1 + 2(S_i^i + 1) - 2(S_i^i) = 3.$$

For a removal, we have two cases. First, when there is no dump from S_1 to S_2, the actual cost is 1, and $S_{i+1}^i = S_i^i$. Therefore $\hat{c}_i = 1$. When there is a dump, the actual cost is $2|S_i| + 1$, and we have $S_{i+1}^i = 0$. Therefore we get

$$\hat{c}_i = (2|S_i| + 1) + 0 - 2|S_i| = 1$$

as desired.

Problem 7-4. Shortest-Path Special Cases

(a) We make the following observation about Dijkstra’s algorithm in this case: if i is the value returned by the most recent DELETE-MIN, then the priority queue only contains keys $i, i + 1, \ldots, i + C, \infty$. This is because each element in the queue has key at least i, and is either not a neighbor of any vertex that has been removed from the queue (in which case its key is still ∞), or it is a neighbor of a vertex that has been removed. Such a neighbor is within i of the source vertex, so the vertex in question would have key at most $i + C$. Therefore by keeping an array as our priority queue (with $CV = O(V)$ entries), we can implement DELETE-MIN in $O(1)$ time by straightforward search in the array, for a new total running time of $O(V + E)$.

We can also make a direct transformation to a BFS problem, in the following way: split each edge with weight $w > 0$ into w edges (by adding $w - 1$ nodes in between). Contract (i.e., merge) vertices connected by edges of weight 0. This transformation increases the size of the graph by a factor of at most C (a constant), so the number of nodes in the new graph is still $O(V)$, and the number of edges $O(E)$. Therefore we can run a breadth-first search in time $O(V + E)$.

(b) (Note the correction to the original problem set: the desired time is $O((V + E)\log \log u)$.) Note that the priorities in the queue are the lengths of paths, so they may be up to length uV. Use a van Emde Boas queue, with universe $\{0 \ldots uV\}$, in Dijkstra’s algorithm. Because $u > V$, the running time of a vEB operation is $O(\log \log uV) = O(\log \log u)^2 = O(\log \log u)$. Instead of decreasing keys (which we don’t know how to
do for vEB queues), we simply remove the old key and insert the new one. This is done at most $|E|$ times, so by modifying the analysis of the algorithm, we get a $O((V + E) \lg \lg u)$ running time.

(c) Store a bit vector of length u, initially all zeros. To insert an element with key x, set bit x to 1 (and update any pointers to auxiliary data). Maintain an index to which key the last DELETE-MIN returned. The DELETE-MIN procedure works as follows: starting from the current index, find the smallest key that exists in the queue (i.e., the index of the first non-zero bit) and return its element. Update the index accordingly. The total time over a sequence of k operations is $O(u)$ to make at most one full pass over the bit vector, plus $O(k)$ to do the deletions, for $O(u + k)$ as desired.

(d) We can use the monotone priority queue exactly as described above in Dijkstra’s algorithm. We perform $O(|V|)$ DELETE-MIN operations, so the running time becomes $O(|V| + |E| + u)$.