
Introduction to Algorithms October 21, 2002
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 17

Problem Set 5

This problem set is due in lecture on Wednesday, October 30.

Reading: Chapter 14;
�
33.1-33.2

Both exercises and problems should be solved, but only the problems should be turned in.
Exercises are intended to help you master the course material. Even though you should not turn in
the exercise solutions, you are responsible for material covered by the exercises.

Mark the top of each sheet with your name, the course number, the problem number, your
recitation section, the date, and the names of any students with whom you collaborated.

Each problem should be done on a separate sheet (or sheets) of three-hole punched paper.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up
should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of your essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudocode.

2. At least one worked example or diagram to show more precisely how your algorithm works.

3. A proof (or indication) of the correctness of the algorithm.

4. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Graders will be instructed to take off points for convo-
luted and obtuse descriptions.

Exercise 5-1. Do Exercise 14.1-5 on page 307 of CLRS.

Exercise 5-2. Do Exercise 14.2-2 on page 310 of CLRS.

Exercise 5-3. Do Exercise 14.3-5 on page 317 of CLRS.

Exercise 5-4. Do Exercise 33.1-4 on page 939 of CLRS.

Exercise 5-5. Do Exercise 33.2-6 on page 947 of CLRS.

2 Handout 17: Problem Set 5

Problem 5-1. We have seen in class how SEARCH and INSERT can be performed on a randomized
skip list in ���������
	�� time, with high probability (where 	 is the total number of elements in the
structure). However, this assumes that the structure is used as a “black box”: the actual layout of
the structure is opaque to its user, and the operations performed are independent of the random
coin flips used in constructing the skip list. In many contexts, these assumptions are reasonable;
in this case we say that the user of the structure is oblivious. Our analysis from class assumes an
oblivious user.

However, in some situations this assumption is unfounded. For example, an adversarial user might
be able to infer something about the layout of the data structure by performing “timing attacks”
(observing the exact running time of a SEARCH or INSERT and adapting its queries based on that
data). We say that an adversary is omniscient if it learns the results of every coin flip (and thereby,
the exact layout of the skip list at all times). Note that an omniscient adversary cannot control the
outcomes of the coin flips, it merely learns what they are. The point of this problem is to investigate
how well (actually, how badly) skip lists tolerate omniscient adversaries.

(a) A skip list begins with just two boundary elements, �� and � , at the lowest (and
only) level. Define an uninterrupted chain to be a chain of consecutive elements in the
lowest level, none of whose elements appear in any higher level. Let ��� be the length
of the longest uninterrupted chain after inserting the � th element. Give an omniscient
adversary strategy for adaptively inserting elements that has the following properties:
for all � , ����������������� with probability at least �! #" , and �$���������%� with probability � .
In other words, with each insertion, the length of the longest uninterrupted chain must
never become any shorter, and it must increase with probability at least �� #" . You may
assume that, for any distinct keys & and ' , the adversary can find a key (such that
&*)+(,)+' .

(b) Prove that, by inserting 	 elements according to your strategy from above, the length
of the longest uninterrupted chain is -.��	/� with high probability.

(c) What are the implications of this strategy on the running time of SEARCH and INSERT?
Contrast this with the performance of a red-black tree in the presence of an omniscient
adversary. Be brief.

Problem 5-2. You are soon to be a contestant on Survivor: MIT. The format of the show is as
follows: the 	 contestants choose among seats, at a round table, consecutively labelled � through 	 .
Then, the host goes around the table (starting at chair 1) and kicks off every 0 th remaining con-
testant, until none remain. The longer a contestant remains, the more fabulous the cash and prizes
he receives. The ��	21304� -Survivor permutation is the order in which the contestants are kicked off
the show. For example, the �657198:� -Survivor permutation is �;8<19=>1?"<195<1?@<1A��13BC� .
You don’t know 	 (the number of contestants) or 0 ahead of time, but you definitely want fabulous
prizes. Therefore you need a quick way to determine the order of elimination so you can grab the
best seat (or the second-best if it has already been taken, etc.).

Handout 17: Problem Set 5 3

(a) Give an �,� 	 04� -time algorithm that, given integers 	 and 0 , ouputs the ��	 1 04� -
Survivor permutation. Hint: Think about a circular, doubly-linked list.

(b) The show’s producers tell you that 0 could in fact be very large (up to), so you
decide your algorithm from above isn’t efficient enough. Give an ����	 � �#� 	�� -time
algorithm that, on integers 0 and 	 , outputs the ��	 1 04� -Survivor permutation. Hint:
How can you efficiently find the 0 th successor in a dynamic set?

Problem 5-3. As the new accountant for AndersenArthur (the previous accountant is on an ex-
tended “leave of absence”), you must design a data structure that stores the history of all the trans-
actions on its bank account. In keeping with corporate policy, this data structure should support
insertion of past and future transactions, as well as deletion of existing transactions.

For this problem, you may assume that no two transactions occur on the same date. The data
structure should be able to support the following operations:

INITIALIZE: Initialize the account. The initial balance in the account is $0. This operation should
take ��� �!� time.

INSTRANS(sum, date): Insert a given transaction at a given date. The sum can be either positive
or negative, and should be added to the balance in the account starting from the following day.
Notice that the date can be arbitrary (not necessarily today’s date). This operation should take
�,� ���#� 	�� time, where 	 is the number of transactions in the database.

DELTRANS(date): Delete the transaction that occurs at the given date, if there is any. When a
transaction is deleted, the corresponding sum should be subtracted from the balance in the
account starting from the following day. This operation should take �,� ���#�
	/� steps.

BALANCE(date): Returns the balance in the account at the beginning of the given date. This
operation should take ���������
	�� time.

Describe the data structure you would use, give clear and concise descriptions of the operations,
and argue why they meet the desired running times. Do not write code.

Problem 5-4. Consider 	 chords on a circle. Suppose the circle is centered at � � 1 � � in the & (-
plane, and the chords are given as an unordered list of pairs of their � & 13(�� endpoints. In this
problem, we will develop an ����	 �����
	�� algorithm for counting the number of pairs of chords that
intersect inside the circle. (For example, if the 	 chords are all diameters that meet at the center,
then the correct answer is

��� ���
.) We assume that no two chords share an endpoint.

(a) Suppose we want to sort the endpoints by their counter-clockwise angles, relative to
the positive & -axis (i.e., their polar angles). To do this, we need an algorithm to com-
pare two points: �/�
	��

�
if the angle of �/� is greater than the angle of �

�
. Give an

��� �!� -time algorithm to perform such a comparison, which does not rely upon trigono-
metric functions or division. You may assume that the points lie on the circle.

(b) Now we want to label every endpoint as either � � or � , such that the following prop-
erties hold:

4 Handout 17: Problem Set 5

1. Each chord has a unique �����C�#1�������1 		� for which one endpoint is labelled ��

and the other endpoint is labelled �
 .

2. In a counter-clockwise sweep around the circle, starting at the positive & -axis, ��

appears before
 and before ��
 ��� , for all � .

Give an �,� 	 ���#� 	/� -time algorithm to perform this labelling.

(c) Give an ����	 � �#�
	�� -time algorithm to compute the number of pairs of chords that
intersect inside the circle. Note that two chords ��� and ��� intersect if and only if
exactly one of the points � 1�� appears between � and � on the circle. Hint: You may
want to use dynamic order statistics.

