
Introduction to Algorithms October 29, 2001
Massachusetts Institute of Technology 6.046J/18.410J
Singapore-MIT Alliance SMA5503
Professors Erik Demaine, Lee Wee Sun, and Charles E. Leiserson Handout 24

Problem Set 6 Solutions
Exercise 6-1. Do exercise 14.1-5 on page 307 of CLRS.

Solution: First find the rank ofx. Add i to this value, and find the element with this rank. This
takes2O(lg n) + 1 time.

Exercise 6-2. Do exercise 14.2-2 on page 310 of CLRS.

Solution: Yes, since the black height of a node can be computed from the information at the node
and its two children. According to Theorem 14.1 (page 309 of CLRS) insertion and deletion can
be still performed inO(lg n) time.

Exercise 6-3. Do exercise 14.3-1 on page 316 of CLRS.

Solution: Assume that before the rotationx hasα as its left child andy as its right child, andy has
β as its left child andγ as its right child. The rotation changes the pointers as in the LEFT-ROTATE

procedure as shown on page 278 of CLRS. In addition, at the end it setsmax[y] ← max[x] and
max[x]← max(max[α],max[β],high[int[x]]) in that order. This takesO(1) time.

Exercise 6-4. Do exercise 33.1-4 on page 946 of CLRS.

Solution: For each point, sort the others by their polar angle relative to that point, and check if
any two adjacent points in the sorted order have the same angle. For each point, we needO(n)
time to compute the polar angles of all the other points,O(n lg n) time to sort them andO(n) time
to check whether any two adjacent points have the same angle. We repeat the process forO(n)
points, which gives us a total running time ofO(n2 lg n).

Exercise 6-5. Do exercise 33.2-1 on page 946 of CLRS.

Solution: We can show this by construction: consider a regular polygon withn sides. Ifn is
even, for each side of the polygon there is exactly one other side parallel to it (think of a square,
or a hexagon). Ifn is odd, there are no parallel sides (think of a triangle or a pentagon). In any
case, of all pairwisen(n− 1)/2 combinations of sides, there are at mostn/2 pairs of sides which
are parallel to each other. The remainingn(n− 1)/2− n/2 are not parallel. So if we extend them
sufficiently in both directions, at some point they will intersect (pairwise). Thus we will haven
segments withn(n− 1)/2− n/2 = Θ(n2) intersections.

Problem 6-1. Overlapping rectangles

VLSI databases commonly represent an integrated circuit as a collection of rectangles. Assume that
each rectangle is rectilinearly oriented (sides parallel to thex- andy-axis), so that a representation
of a rectangle consists of its minimum and maximumx- andy-coordinates.



2 Handout 24: Problem Set 6 Solutions

(a) Give anO(n lg n)-time algorithm that decides whether a set of rectangles so repre-
sented contains two rectangles that overlap. Your algorithm need not report all inter-
secting pairs, but it must report that an overlap exists if one rectangle entirely covers
another, even if the boundary lines do not intersect. (Hint: Move a “sweep” line across
the set of rectangles by replacing one of the two spatial dimensions with time. At all
times maintain the collection of rectangles pierced by the sweep line.)

Solution:

Idea: The main idea here is to move a sweep line from left to right, while maintain-
ing the set of rectangles intersected by the line in an interval tree.

Details: First sort thex-coordinates of the rectangles. Scan the sortedx-coordinate
list from lowest to highest. When anx-coordinate of a left edge is found, add the in-
terval corresponding to they-coordinates of that edge into the interval tree and check
for overlap. When anx-coordinate of a right edge is found, delete the interval cor-
responding to they-coordinates of that edge from the interval tree. The interval tree
always contains the set of “open” rectangles intersected by the sweep line.

(b) Argue that your algorithm indeed runs inO(n lg n) time in the worst case.

Solution: This implementation requiresO(n lg n) time to sort thex-coordinates, and
2n ·O(lg n) to maintain the interval tree, for a total running time ofO(n lg n).

Problem 6-2. GPS map display

After graduating from MIT, you decide to join GiPSy, a startup that hopes to make money by
selling an affordable hand-held GPS (Global Positioning System) device. The device picks up
time-stamped messages from 4 geostationary satellites and uses them to calculate its precise co-
ordinates on the globe by taking into account the orbital position of each satellite (included in the
messages) and the time it took each message to reach the device.

The device has a rectangular LCD screen which displays the user’s exact location on the map, as
well as all the nearby streets; see Figure 1. The device must be able to update the map display in
real time because the user may be moving and may zoom in or out. GiPSy’s first model will only
work in cities whose streets are arranged in a grid (such as Manhattan). If the first model proves
to be a success in those markets, GiPSy hopes to secure the necessary funding to develop a model
that can work in all cities.

Your task is to figure out how the city map should be preprocessed and stored on the device, in
order to quickly answer queries about what streets are in the vicinity of the user. More precisely,
the problem is defined as follows:

• A road r = 〈(rx1, ry1), (rx2, ry2)〉 is a line segment, either horizontal or vertical, spec-
ified by the coordinates of its endpoints,(rx1, ry1) and (rx2, ry2). Thus, for every road
r = 〈(rx1, ry1), (rx2, ry2)〉, we have eitherrx1 = rx2 (vertical) orry1 = ry2 (horizontal).



Handout 24: Problem Set 6 Solutions 3

Washington St

Cambridge St

A
l
b
a
n
y
 
S
t

T
e
x
a
s
 
S
t

Parking

Lot

Parking
Lot

(x2, y2)

(x1, y1)

X you are here

Vegas St

Figure 1: A sketch of a GiPSy device. Washington St., Vegas St., and Albany St. are Type-2 roads.
Cambridge St. and Texas St. are Type-1 roads. The view rectangle is determined by the coordinates
of the lower-left and upper-right corners, as shown.

• A mapM = {r1, r2, . . . , rn} is a set ofn roads.

• A view rectangleV = 〈(Vx1, Vy1), (Vx2, Vy2)〉 specifies the rectangular region that should
be displayed by giving the coordinates of the rectangle’s lower-left and upper-right corners,
(Vx1, Vy1) and(Vx2, Vy2) respectively.

• A roadr is visiblein the view rectangleV if it intersects the interior of the rectangleV . There
are two types of visible roadsr: can appear on the rectangular display:

Type 1: One or both endpoints of the roadr are inside the view rectangleV .

Type 2: The roadr crosses the view rectangleV but both its endpoints lie outside the view
rectangleV .

• The goal of aclipping queryis to report all the visible roads for a given view rectangleV .

Because the mapM does not change often, we are free to spend a reasonable amount of time
preprocessing the mapM into a data structure that supports queries efficiently, using a reasonable
amount of auxiliary space.



4 Handout 24: Problem Set 6 Solutions

In the problem parts that follows, you will often be called upon to “give an efficient method” for
supporting a particular type of query. For each such problem part, you must do the following:

1. Give an efficient algorithm for preprocessing the mapM into a data structure.

2. Give an efficient algorithm for using this data structure to answer the query for a given view
rectangleV .

3. Analyze the worst-case preprocessing time, worst-case query time, and worst-case space oc-
cupied by the data structure. In all cases, the analysis should be in terms of the total numbern
of roads on the mapM and the numberk of visible roads in the view rectangleV .

Optimizing the query time is most important; the preprocessing time is secondary.

(a) Give an efficient method for finding all Type-1 roads. (Hint: Use a two-dimensional
range tree.)

Solution: Place the endpoints of the roads into a two-dimensional range tree. A range
query on the view rectangle will return exactly the desired roads. Forn roads, there
are 2n endpoints, so the running time is asymptotically the same as for 2-D range
trees:O(n lg n) preprocessing time,O(lg2 n+ k) query time, andO(n lg n) space.

The rest of the problem is about finding Type-2 roads. Without loss of generality, we focus on
finding horizontal Type-2 roads.

A horizontal roadr straddlesa view rectangleV if it crosses the left edge ofV . Thus, every
straddling roadr is visible. Depending on whether the right endpoint of a straddling horizontal
roadr is inside the view rectangle, a straddling horizontal roadr may be Type-1 or Type-2.

(b) Suppose that we knew how to compute the set of straddling horizontal roads for a
given mapM and view rectangleV . Give an efficient algorithm to convert the set of
straddling horizontal roads into the set of Type-2 horizontal roads.

Solution: Part (a) identifies all of the Type-1 horizontal roads. Mark these roads. Now
run through the set of straddling horizontal roads and remove any roads that have been
marked. Then we obtain the set of Type-2 horizontal roads, because every Type-2
horizontal road is a straddling horizontal road. The running time is proportional to the
number of straddling horizontal roads, which is at mostk.

Thus, our goal is to identify which horizontal roads are straddling. We use the following character-
ization. A horizontal roadr = 〈(rx1, ry), (rx2, ry)〉 straddles the view rectangleV = 〈(Vx1, Vy1),
(Vx2, Vy2)〉 if it satisfies two properties:

1. rx1 ≤ Vx1 ≤ rx2, i.e., the roadr crosses the vertical line extending the left edge of the view
rectangleV . We say thatr is horizontally straddling.

2. Vy1 ≤ ry ≤ Vy2, i.e., the roadr falls within the vertical extent of the view rectangleV . We
say thatr is vertically straddling.



Handout 24: Problem Set 6 Solutions 5

(c) Draw a picture showing a view rectangleV and an example of each of the following
kinds of visible horizontal roads:

1. straddling and Type-2,
2. straddling but not Type-2,
3. horizontally straddling but not vertically straddling,
4. vertically straddling but not horizontally straddling, and
5. neither horizontally straddling nor vertically straddling (but still visible).

Solution: See Figure 2

5

1

2

3

4

Figure 2: Different kinds of horizontal roads

A simple approach for computing the set of straddling horizontal roads is to

• compute the set of vertically straddling horizontal roads, and

• remove from this set any roads that are not horizontally straddling.

(d) Give an efficient method for finding all vertically straddling horizontal roads. (Hint:
Use a one-dimensional range tree.)

Solution: Place the endpoints of all horizontal roads in a 1-D range tree based on their
y-coordinates. We can then use this range tree to find all the roads whosey-coordinates
lie within the vertical extent of the view rectangleV , that isVy1 ≤ ry ≤ Vy2.
The preprocessing time to build the range tree isO(n lg n), and the tree requiresO(n)
space. Each subsequent query takes timeO(lg n+ p) wherep is the number of candi-
date roads on the mapM .

Once we have the set of vertically straddling horizontal roads, we can simply run through the
list and remove any roads that are not horizontally straddling. This filtering results in the set of
straddling horizontal roads.



6 Handout 24: Problem Set 6 Solutions

(e) Analyze the worst-case running time of this filtering algorithm.

Solution: The running time is linear in the number of vertically straddling horizontal
roads, which can be as high asΘ(n).

(f) Explain why this approach is slow in the worst case.

Solution: The worst case occurs when all roads on the map are vertically straddling.
In that case, the running time isΘ(n), even though few of these roads may actually be
horizontally straddling as well (and hence visible).

Our final goal is to develop a faster method for computing the set of straddling horizontal roads.

(g) Show that instead of explicitly enumerating all vertically straddling horizontal roads
in part (d), we can findO(lg n) nodes in the range tree whose descendants contain
all of the vertically straddling horizontal roads and no other roads. Give an efficient
algorithm to find theseO(lg n) nodes.

Solution: If we insert all horizontal roads into a 1-D range tree based on their
y-coordinates, then as we have seen in lecture, there existO(lg n) subtrees in the
range tree whose nodes contain the result of the query and nothing else. In order to
find the nodes on which theseO(lg n) subtrees are rooted, we can use the procedure
1-D RANGE QUERY presented in lecture, which runs inO(lg n) time.

(h) Give an efficient method for finding all the straddling horizontal roads. (Hint: Com-
bine interval trees with range trees.)

Solution: As we have seen above, the range tree based on they-coordinates of the
horizontal roads returnsO(lg n) subtrees per query. These subtrees contain all the
vertically straddling horizontal roads. In order to find which of those roads are also
horizontally stradddling (and hence in view of the rectangle), we can “pre-emptively”
construct an interval tree for each one of the nodes of the range tree. The interval tree
associated with each node stores thex-coordinate intervals of all the roads in the entire
subtree rooted at that node. This way, when we get theO(lg n) subtrees after issuing
a query to the range tree (based ony-coordinate), we can issue separate queries to the
interval trees of each subtree root to find all the roads which intersect the horizontal
range of the rectangle (that is, the interval[Vx1, Vx2]).

Query time: Since each interval tree stores at mostO(n) points, each query to the
interval tree takes timeO(k lg n) wherek is the number of roads returned by that
interval tree. Note that the time taken for a query that returns no roads (k = 0) is
O(lg n) and notO(0). So a more precise description of the running time would be
O(lg n+ k lg n).

We issueO(lg n) such queries, for a total running time ofO(lg2n+K lg n) whereK
is the total number of straddling roads.



Handout 24: Problem Set 6 Solutions 7

Pre-processing Time: Building each interval tree takes timeO(m lgm) wherem
is the number of nodes it contains. So we needO(n lg n) time to build the interval
tree for the root of the range tree,O (2(n/2) lg(n/2)) for the roots of its subtrees etc.
Since

n lg n+ 2
(
n

2
lg
n

2

)
+ 4

(
n

4
lg
n

4

)
+ . . . 0 = n

[
lg n+ lg

n

2
+ lg

n

4
+ . . .+ 0

]
= n [lg n+ lg n− 1 + lg n− 2 + . . .+ lg n− lg n]

≈ n

[
(lg n)(lg n)− (lg n)2

2

]

= n
lg2 n

2

the time it takes to initially build all these trees is isO(n lg2 n).

This can also be seen by considering the recurrence

T (n) = 2T (n/2) + Θ(n lg n)

which falls under case 2 of the Master Theorem and gives us the same answer.

Space: Storing these interval trees takesO(n lg n) space since we haveO(n) points
and each point is stored in exactly one interval tree at each level of the original range
tree (similar analysis as for 2-D range trees).

(i) Conclude by analyzing the entire method for answering clipping queries.

Solution: We needO(n lg n) time to build the range tree andO(n lg2 n) time to build
the interval trees, for a total ofO(n lg2 n) time for the pre-processing stage.

The space we need for the range tree isO(n), and we need anotherO(n lg n) for the
interval trees, for a total ofO(n lg n).

Each query to the range tree takesO(lg n) and returnsO(lg n) subtrees. As we saw
above, the time it takes takes to query the associatedO(lg n) interval trees isO(lg2 n+
K lg n) whereK is the total number of visible roads. Thus the total running time for
each query isO(lg2 n+K lg n).


