Introduction to Algorithms October22,2001

Massachusettsistituteof Technology 6.046J/18.410J

Singapore-MITAlliance SMA5503

Professor&rik DemaineLeeWeeSun,andCharlesE. Leiserson Handout22
Problem Set5

MIT students: This problemsetis duein lectureon Monday, October 22.

SMA students: This problemsetis dueafterthevideo-conferencingessioron Wednesday, Oc-
tober 24.

Reading: Chaptersl2and13

Both exercisesand problemsshould be solved, but only the problems should be turnedin.
Exercisesareintendedo helpyou masterthe coursematerial.Eventhoughyou shouldnotturnin
the exercisesolutions,you areresponsibldor materialcoveredby the exercises.

Mark the top of eachsheetwith your name,the coursenumber the problemnumber your
recitationinstructorandtime, thedate ,andthenamesf any studentsvith whomyoucollaborated.

MIT students: Eachproblemshouldbedoneonaseparatshee{or sheetspf three-holgpunched
paper

SMA students: Eachproblemshouldbedoneon aseparatsheeior sheetspf two-holepunched

paper

Youwill oftenbecalleduponto “give analgorithm”to solve a certainproblem.Your write-up
shouldtake the form of a shortessay A topic paragraprshouldsummarizethe problemyou are
solvingandwhatyour resultsare. The body of your essayshouldprovide thefollowing:

1. A descriptionof thealgorithmin Englishand,if helpful, pseudocode.

2. At leastoneworkedexampleor diagramto shav morepreciselyhow your algorithmworks.
3. A proof(orindication)of the correctnessf thealgorithm.

4. An analysisof therunningtime of thealgorithm.

Rememberyour goalis to communicate Graderswill be instructedto take off pointsfor corvo-
lutedandobtusedescriptions.

Exercise5-1. Do exercisel2.2-9on page2600of CLRS.
Exercise5-2. Do exercisel2.4-3on page268of CLRS.



2 Handout?22: ProblemSet5

Figure 1: A treap. Eachnodez is labeledwith key[z] : priority[z]. For example,the root has
key G’ andpriority 4.

Exercise5-3. Do exercisel3.2-4on page279of CLRS.
Exercise5-4. Do exercisel3.4-7on page2950f CLRS.

Problem5-1. Treaps

If weinsertasetof n itemsinto abinarysearchree,theresultingtreemaybehorribly unbalanced,
leadingto long searchtimes. On the otherhand,we know thatrandomlybuilt binary searchrees
tendto bebalancedTherefore a stratgy that,on average puilds a balancedreefor afixed setof
itemsis to randomlypermutetheitemsandtheninsertthemin thatorderinto thetree.

But, whatif we donothave all theitemsatonce?If werecevetheitemsoneatatime,canwe still
randomlybuild abinarysearchtreeout of them?

We will examinea datastructurethatanswerghis questionin the affirmative. A treap is a binary
searchtreewith a modifiedway of orderingthe nodes. Figure 1 shovs an example. As usual,
eachnodez in thetreehasakey valuekey[z]. In addition,we assigrpriority[z], whichis arandom
numberchosenndependentlyor eachnode.We assumehatall prioritiesaredistinctandalsothat
all keys aredistinct. Thenodesof thetreapareorderedsothatthe keys obey thebinary-search-tree
propertyandthe priorities obey the min-heaporderproperty:

olf v is aleft child of u, thenkey[v] < key[u].
elf v is aright child of u, thenkey[v] > key[u].
elf v isachild of u, thenpriority[v] > priority[u].
(This combinationof propertieds why thetreeis calleda “treap;” it hasfeaturesof bothabinary

searchireeandaheap.)

It helpsto think of treapsin thefollowing way. Supposehatwe insertnodesz, xs, - . ., Z,, With

associatedkeys, into a treap. Thenthe resultingtreapis the treethat would have beenformedif

thenodeshadbeeninsertednto a normalbinary searchreein the ordergivenby their (randomly
chosenpriorities, i.e., priority[z;] < priority[z;] meanghatz; wasinsertedbeforez;.



Handout?2: ProblemSet5 3

(a) Explainwhy atreaponn nodess equivalentto arandomlybuilt binarysearchreeon
n nodes.

Solution:

Assigningprioritiesto nodesasthey areinsertedinto a treapis the sameasinserting
then nodesinto anormalbinary searchreein the (increasingprderdefinedby their
priorities.

Soif we assignthe priorities randomly we will geta randomorderof n priorities,
which is the sameas a randompermutationof the n inputs, so we canview this as
insertingthen itemsin randomorderi.e. arandomlybuilt binary searchree.

(b) Concludethatthe expectedime to searchfor avaluein thetreapis ©(I1gn).
Solution:

The time to searchfor anitem thatis in the treapis equalto the depth of thatitem.
Now, we know thatfor anitem x in arandomlybuilt binary searchtree,the expected
depthof z is ©(Ign) (the expectationis taken over permutationf the n nodesnot
the choiceof z). Thus,theexpectedime to searcHor avaluein thetreapis O(lgn).

Let us seehow to inserta new nodeinto an existing treap. The first thing we do is assignto the
new nodea randompriority. Thenwe call the insertionalgorithm,which we call TREAP-INSERT,
whoseoperationis illustratedin Figure?2.

(c) Explainhow TREAP-INSERT works. Explaintheideain Englishandgive pseudocode.
(Hint: Executethe usualbinary-search-tremsertionprocedureandthenperformro-
tationsto restorethe min-heaporderproperty)

Solution:

The hint givesthe idea: do the usualbinary searchtreeinsertandthenperformrota-
tionsto restorethe min-heaporderproperty

TREAP-INSERT (7, z) insertsz into thetreap? (by modifying T'). It requiresthatz
hasdefinedkey andpriority values. We have usedthe subroutinesI REE-INSERT,
RIGHT-ROTATE, andRIGHT-ROTATE asdefinedin CLRS.

TREAP-INSERT(T, )

1 TREE-INSERT(T,x)

2 while z # root[T] andpriority[z] < priority[p[z]]
3 do if z = l€eft[p[z]]

4 then RIGHT-ROTATE(T, p[z])

5 else LEFT-ROTATE(T, p[z])



4 Handout?22: ProblemSet5

@ @% ®®

(€) ()

Figure 2: The operationof TREAP-INSERT. (a) The original treap, prior to insertion. (b) The
treapafterinsertinga nodewith key C' andpriority 25. (c)—(d) Intermediatestagesvheninserting
anodewith key D andpriority 9. (e) The treapafter the insertionof parts(c) and(d) is done.
() Thetreapafterinsertinganodewith key F' andpriority 2.



Handout?2: ProblemSet5

(d)

Notethatparentpointerssimplify the codebut arenot necessarySincewe only need
to know the parentof eachnode on the path from the root to z (after the call to
TREE-INSERT), we cankeeptrackof theseourseles.

Shaw thatthe expectedrunningtime of TREAP-INSERT is ©(lgn).
Solution:

TREAP-INSERT first insertsan item in the tree usingthe normalbinary searchtree
insertandthenperformsa numberof rotationsto restorethe min-heapproperty

The normalbinary searchreeinsertalwaysplacesthe new item atanew leaf of tree.
Thereforethe expectedtime to insertanitem into a treapis the expectedheightof a
randomlybuilt binary searchiree,whichis O(lgn). Sincethe heightof every binary
treeis Q(Ign) (acompletetreehasthe smallestheightandits heightis Q(1gn)), the
expectedheightis ©(lgn).

The maximumnumberof rotationsoccurswhenthe new itemrecevesa priority less
thanall priorities in the tree. In this caseit needsto be rotatedfrom a leaf to the
root. An upperboundon the expectednumberof rotationsis thereforethe expected
heightof a randomlybuilt binary searchtree,which is ©(Ign). Sinceeachrotation
take constantime, the expectedtime to rotateis O (Ign).

Thusthe expectedrunningtime of TREAP-INSERT isO(Ign + 1gn) = O(lgn).



6 Handout?22: ProblemSet5

Problem5-2. Join operation onred-blacktrees

Thejoin operationtakestwo dynamicsetssS; andS; andanelementz suchthatfor any z; € S;
andz, € Sy, we have key[z1] < key[z] < key[zo]. It returnsasetS = S; U {z} U S,. In this
problem,we investigatenow to implementthejoin operationon red-blacktrees.

(a) Givenared-blacktreeT’, we storeits black-heightasthefield bh[T"]. Arguethatthis
field canbe maintainedby RB-INSERT and RB-DELETE (asgivenin the textbook,
on pages280and288respectrely) withoutrequiringextra storagdan the nodesof the
treeandwithoutincreasingheasymptotiaunningtimes. Show thatwhile descending
throughT', we candeterminethe black-heightof eachnodewe visit in O(1) time per
nodevisited.

Solution:

Startingat the root, we canproceedo a leaf, coutingthe numberof black nodeson
the path. This doesnot requireary extra storagein the nodesof the tree and will
take O(Ign) time. SinceRB-INSERT andRB-DELETE alsorunin O(lgn) time, the
asymptoticunningtime is notincreased.

While descendinghrough7’, we decremenbh|T] by 1 everytime we encountera
blacknode. The black-heightof anode, N, is thenbh[T'] minusthe numberof black
nodesencounteredexcluding node N itself). This decrementanbe donein O(1)
time pernodevisited.

We wishto implementtheoperatiorRB-JOIN (T}, z, T3), whichmaydestry 77 and7; andreturns
ared-blacktreeT =T U {z} U T5. Letn bethetotal numberof nodesin 77 and7s.

(b) Assumethatbh[7;] > bh[T3]. Describean O(lgn)-time algorithmthatfinds a black
nodey in T; with the largestkey from amongthosenodeswhoseblack-heightis
bh[T5].

Solution:

SinceT; is a binary searchtree, the largestelementat ary level is on the rightmost
path. So, we decenddown the rightmostpath, calculatingbh at eachnode (as de-
scribedin the previous part), until we reachthe black node whoseblack-heightis
bh[T5], which is what we want. Thusthe runningtime is at mostthe heightof the
tree,i.e. O(lgn). (Calculatingthe black-heightakesO(1) pernode,asshovnin the
previouspart).

(c) LetT, bethesubtregootedaty. Describehow T, U {z} U T, canreplaceT,, in O(1)
time without destrging the binary-search-treproperty

Solution:



Handout?2: ProblemSet5 7

Insertz into wherey wasin T;. Form T, U {z} U T, by letting 7, be the left sub-
treeof x, and7; betheright subtreeof z. Giventhatthisjoin operationis suchthat
key[z,] < key[z] < key[z,] wherez; € T7 andz, € T,, thebinarysearchreeproperty
is maintainedandthis operatiorntakesO(1) time.

Considerthefollowing red-blackproperties:

ecvery nodeis eitherredor black
ecveryleafis black

efor eachnode all pathsfrom thenodeto descendareavescontainthe samenumberof black
nodes

(d) Whatcolorshouldwe make x sothattheabove red-blackpropertiesaremaintained?
Solution:

We shouldmale z red. SinceT,, alreadyhasblack-height= bh(T}), z mustberedto
maintainthe sameblack-heightbh[T}, U {z} U T3] = bh(T}))

Considerthefollowing red-blackproperties:

etherootis black
oif anodeis red,thenbothits childrenareblack

(e) Describehow theabovetwo propertiescanbe enforcedn O(lgn) time.
Solution:

UseRB-INSERT-FIXUP onthenew tree,to performtherecoloringandrotationsnec-
essaryto enforcethesetwo properties. We know that RB-INSERT-FIXUP runsin
O(lgn) time, thuswe concludethatthe enforcementanbe donein O(Ign) time.

(f) Arguethattherunningtime of RB-JOIN is O(lgn).
Solution:

RB-JoIN is implementedby usingall the previous parts: The black-heightcanbe
calculatedandmaintainedn O(1) time. Therequiredblacknode,y, canbefoundin
O(lgn) time. Then,thejoin is donein O(Ign) time, andfinally, afterassigninge the
right color, thered-blacktreepropertiescanbe enforcedn O(lgn) time. Sothetotal
runingtimeis O(lgn)



