
Introduction to Algorithms October 8, 2001
Massachusetts Institute of Technology 6.046J/18.410J
Singapore-MIT Alliance SMA5503
Professors Erik Demaine, Lee Wee Sun, and Charles E. Leiserson Handout 18

Problem Set 4 Solutions

MIT students: This problem set is due in recitation onFriday, October 5.

SMA students: This problem set is due after the recitation session onFriday, October 5.

Reading:Chapters 10 and 11

Both exercises and problems should be solved, butonly the problemsshould be turned in.
Exercises are intended to help you master the course material. Even though you should not turn in
the exercise solutions, you are responsible for material covered by the exercises.

Mark the top of each sheet with your name, the course number, the problem number, your
recitation instructor and time, the date, and the names of any students with whom you collaborated.

MIT students: Each problem should be done on a separate sheet (or sheets) of three-hole punched
paper.

SMA students: Each problem should be done on a separate sheet (or sheets) of two-hole punched
paper.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up
should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of your essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudocode.

2. At least one worked example or diagram to show more precisely how your algorithm works.

3. A proof (or indication) of the correctness of the algorithm.

4. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Graders will be instructed to take off points for convo-
luted and obtuse descriptions.

2 Handout 18: Problem Set 4 Solutions

Exercise 4-1. Do exercise 10.1-6 on page 204 of CLRS.

Solution:

Use stackA for ENQUEUEoperations, and stackB for DEQUEUEoperations. Simulate ENQUEUE

by pushing new element onto stackA. Simulate DEQUEUEby popping top element from stackB,
but if stackB is empty when a DEQUEUEis requested, first empty stackA into stackB by popping
elements one at a time from stackA and pushing them onto stackB. (Note that copying the stack
reverses its order, so the oldest element is then on top and can be removed with DEQUEUE.)

ENQUEUE takes timeO(1). In the average case, DEQUEUE also takes timeO(1), but we could
get unlucky and have to transfern elements from one stack to another, so it is worst caseO(n).
(However, we canamortizethe cost of the transfer over all of the ENQUEUE and DEQUEUEoper-
ations. It is clear that each element must be popped fromA and pushed ontoB exactly once, so an
amortized analysis gives an average worst case time ofO(1) for DEQUEUE.)

Exercise 4-2. Do exercise 10.2-4 on page 208 of CLRS.

Solution:

Store the value you’re looking for in the sentinel.

Exercise 4-3. Do exercise 10.3-4 on page 213 of CLRS.

Solution:

Use a variablem, that indicates the number of elements currently in the list, and always keep the
list in array locations1 throughm. Allocating a new object is accomplished by using array entry
A[m + 1]. Whenever an object that occupies one of the locations1 throughm is freed, take the
object at locationm and move it there, thus freeing entrym. This way we guarantee that the list is
always compact.

Exercise 4-4. Suppose we hash elements of a setU of keys intom slots. Show that if|U | >
(n − 1)m, there is a subset ofU of sizen consisting of keys that all hash to the same slot, so that
the worst-case searching time for hashing with chaining isΘ(n).

Solution:

Mapping(n − 1)m + 1 keys into a table of sizem must result in at least one slot withn keys or
more (pigeonhole principle): if each slot held at mostn − 1 keys, there would only be at most
(n − 1)m keys. The(n − 1)m + 1th key would have to go in some slot which already hadn − 1
keys. Therefore, the worst-case searching time for hashing with chaining isΘ(n).

Handout 18: Problem Set 4 Solutions 3

Exercise 4-5. Do exercise 11.3-3 on page 236 of CLRS.

Solution:

All permutations can be generated by a sequence of two character interchanges. Thus it suffices to
show that if two arbitrary charactersi andj are switched, then the values hash to the same place.

Now consider two numbersx andy which have charactersi andj interchanged. w.l.o.g., sayi > j.

x− y = (xi − yi)(m+ 1)(i−1) + (xj − yj)(m+ 1)(j−1)

= (xi − xj)(m+ 1)(i−1) − (xi − xj)(m+ 1)(j−1)

= (xi − xj)((m+ 1)(i−1) − (m+ 1)(j−1))

= (xi − xj)(m+ 1)(j−1)((m+ 1)(i−j) − 1)

= (xi − xj)(m+ 1)(j−1)((m+ 1)− 1)
i−j−1∑
k=0

(m+ 1)k

≡ 0 mod m

Problem 4-1. Comparisons among dynamic sets

For each type of dynamic set in the following table, what is the asymptotic running time for each
operation listed, in terms of the number of elementsn?

For operations that have not been explicitly defined, consider how you would implement the oper-
ation given the data structure. You do not need to give the algorithm, just the running time. State
any assumptions that you make.

Assume that the hash tables resolve collisions by chaining with doubly linked lists.

unsorted singly sorted doubly min-heap, hash table, hash table,
linked list, linked list, worst-case worst-case average-case
worst-case worst-case

SEARCH(L, k)

INSERT(L, x)

DELETE(L, x)

SUCCESSOR(L, x)

M INIMUM (L)

MAXIMUM (L)

4 Handout 18: Problem Set 4 Solutions

Solution:

unsorted singly sorted doubly min-heap, hash table, hash table,
linked list, linked list, worst-case worst-case average-case
worst-case worst-case

SEARCH(L, k) O(n) O(n) O(n) O(n) O(1)
INSERT(L, x) O(1) O(n) O(lgn) O(1) orO(n) O(1)
DELETE(L, x) O(n) O(1) O(lgn) O(1) O(1)
SUCCESSOR(L, x) O(n) O(1) O(n) O(n) O(n)
M INIMUM (L) O(n) O(1) O(1) O(n) O(n)
MAXIMUM (L) O(n) O(n) orO(1) O(n) O(n) O(n)

Doubly-linked sorted lists can find the maximum in constant-time if they maintain atail attribute,
or are circular; otherwise, they must scan through the entire list to find the end, takingO(n).

Inserting into a hash table takes worst-caseO(n) if you want to ensure there are no duplicate
entries, because you have to do a search first. Otherwise, it’sO(1).

Problem 4-2. k-universal hashing and authentication

LetH be a class of hash functions in which each hash functionh ∈ Hmaps the universeU of keys
to {0, 1, . . . ,m− 1}. We say thatH is k-universal if, for every fixed sequence ofk distinct keys〈
x(1), x(2), . . . , x(k)

〉
and for anyh chosen at random fromH, the sequence

〈
h(x(1)), h(x(2)), . . . , h(x(k))

〉
is equally likely to be any of themk sequences of lengthk with elements drawn from{0, 1, . . . ,m− 1}.

(a) Show that if the familyH of hash functions is2-universal, then it is universal.

Solution:

If H is 2-universal then for any two fixed keysx 6= y, the sequence〈x, y〉 is equally
likely to be any sequence in{0, 1, . . . ,m− 1}2. Therefore, ash varies overH, the
number of collisions (h(x) = h(y)) is (1/m) |H|, andH is universal.

(b) Suppose that the universeU is the set ofn-tuples of values drawn fromZp = {0, 1, . . . , p− 1},
wherep is prime. Consider an elementx = 〈x0, x1, . . . , xn−1〉 ∈ U . For anyn-tuple
a = 〈a0, a1, . . . , an−1〉 ∈ U , define the hash functionha by

ha(x) =

n−1∑
j=0

ajxj

 mod p .

LetH = {ha}. This is the family of hash functions shown in lecture to be universal.
Show thatH is not2-universal. (Hint: Find a key for which all hash functions inH
produce the same value.)

Solution:

Suppose we takex = 〈0, 0, . . . , 0〉, and some fixedy ∈ U . Then for anya ∈ U ,
〈ha(x), ha(y)〉 = 〈0, ha(y)〉. This shows that the classH is not2-universal, since not
all sequences〈ha(x), ha(y)〉 are equally likely to occur.

Handout 18: Problem Set 4 Solutions 5

(c) Suppose that we modifyH slightly from part (b): For anya ∈ U and for anyb ∈ Zp,
define

h′a,b(x) =

n−1∑
j=0

ajxj + b

 mod p .

andH′ =
{
h′a,b

}
. Argue thatH′ is 2-universal. (Hint: Consider fixedx ∈ U and

y ∈ U , with xi 6= yi for somei. What happens toh′a,b(x) andh′a,b(y) asai andb range
overZp?)

Solution:

For each key pair〈x, y〉, x 6= y, we wish to show that all value pairs
〈
h′a,b(x), h′a,b(y)

〉
are equally likely to occur whenh is chosen randomly fromH – that is, when〈a0, a1, . . . , an−1〉
andb are chosen randomly.

If x 6= y, we must havexi 6= yi for somei. Assume w.l.o.g. thati = 0. We define

α = h′a,b(x), β = h′a,b(y),

and

X =
n−1∑
j=1

ajxj, Y =
n−1∑
j=1

ajyj.

This gives us the equations

α = (a0x0 + b+X) modp, and

β = (a0y0 + b+ Y) modp.

Sincex0 6= y0 andp is prime, there is a unique solution to the above equations fora0

andb in terms ofα andβ. To see this more explicitly, consider that if we want to be
able to generate all possible pairs〈α, β〉, then it is sufficient to be able to independently
controlα andα− β. We have

α− β ≡ a0 (x0 − y0) +X − Y (mod p), so

a0 = (α− β −X + Y) (x0 − y0)−1 mod p.

We know that(x0 − y0)−1 exists and is unique becausex0 6= y0 andp is prime. So
we may makeα − β whatever we want by choosing a particulara0. Having done so,
we may makeα whatever we want by choosing a particularb: this simply applies an
identical offset to bothα andβ, leaving their differencemodp the same.

Therefore, for any givena1 . . .an−1, we may find a hash functionh′a,b which generates
any possible〈α, β〉 by choosing the righta0 andb. Since there arep2 possible choices
for a0 andb, and alsop2 possible values for〈α, β〉, each〈α, β〉 is generated by exactly
one choice ofa0 andb. This is true for allpn−1 choices ofa1 . . .an−1. Therefore, there
are exactlypn−1 functionsh′a,b which generate each value pair〈α, β〉. All value pairs
are then equally likely whenh′a,b is chosen randomly, soH′ is 2-universal.

6 Handout 18: Problem Set 4 Solutions

(d) Suppose that Alice and Bob secretly agree on a hash functionh from a 2-universal
family H of hash functions. Eachh ∈ H maps from a universe of keysU to Zp,
wherep is prime. Later, Alice sends a messagem to Bob over the Internet, where
m ∈ U . She authenticates this message to Bob by also sending an authentication tag
t = h(m), and Bob checks that the pair(m, t) he receives satisfiest = h(m). Suppose
that an adversary intercepts(m, t) en route and tries to fool Bob by replacing the pair
with a different pair(m′, t′). Argue that the probability that the adversary succeeds
in fooling Bob into accepting(m′, t′) is at most1/p, no matter how much computing
power the adversary has, even if the adversary knows the familyH of hash functions
used.

Solution:

For any key pair〈m,m′〉, all hash value pairs〈h(m), h(m′)〉 are equally likely when
h is chosen at random. This is what it means forH to be2-universal. In particular, all
p pairs〈t, h(m′)〉 are equally likely. So even if the adversary knowsH, seeing(m, t)
tells him nothing abouth(m′). Since the probabilities for thep cases are equal and
must sum to1, all possibleh(m′)s have probability1/p, and the adversary can do no
better than guessing.

