
Introduction to Algorithms October 8, 2001
Massachusetts Institute of Technology 6.046J/18.410J
Singapore-MIT Alliance SMA5503
Professors Erik Demaine, Lee Wee Sun, and Charles E. Leiserson Handout 17

Problem Set 3 Solutions

MIT students: This problem set is due in lecture onMonday, October 1.

SMA students: This problem set is due after the video-conferencing session onWednesday, Oc-
tober 3.

Reading:Chapters 8 and 9

Both exercises and problems should be solved, butonly the problemsshould be turned in.
Exercises are intended to help you master the course material. Even though you should not turn in
the exercise solutions, you are responsible for material covered by the exercises.

Mark the top of each sheet with your name, the course number, the problem number, your
recitation instructor and time, the date, and the names of any students with whom you collaborated.

MIT students: Each problem should be done on a separate sheet (or sheets) of three-hole punched
paper.

SMA students: Each problem should be done on a separate sheet (or sheets) of two-hole punched
paper.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up
should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of your essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudocode.

2. At least one worked example or diagram to show more precisely how your algorithm works.

3. A proof (or indication) of the correctness of the algorithm.

4. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Graders will be instructed to take off points for convo-
luted and obtuse descriptions.

Exercise 3-1. Do exercise 8.1-2 on page 167 of CLRS.

Exercise 3-2. Do exercise 8.1-3 on page 168 of CLRS.



2 Handout 17: Problem Set 3 Solutions

Exercise 3-3. Do exercise 8.2-3 on page 170 of CLRS.

Exercise 3-4. Do exercise 8.4-2 on page 177 of CLRS.

Exercise 3-5. Do exercise 9.3-1 on page 192 of CLRS.

Exercise 3-6. Show that the second smallest ofn elements can be found withn + Θ(lg n) com-
parisons in the worst case. (Hint: Also find the smallest element.)

Problem 3-1. Largesti numbers in sorted order

Given a set ofn numbers, we wish to find thei largest in sorted order using a comparison-based
algorithm. Find the algorithm that implements each of the following methods with the best asymp-
totic worst-case running time, and analyze the running times of the algorithms in terms ofn andi.

(a) Sort the numbers, and list thei largest.

Solution:

Use any optimal sorting algorithm, such as MergeSort or HeapSort. Then this can be
done inΘ(n lg n).

(b) Build a max-priority queue from the numbers, and call EXTRACT-MAX i times.

Solution:

Call Build-Heap,Θ(n). Then call Extract-Max,Θ(lg i), i times. So, total running
time isΘ(n+ i lg i).

(c) Use an order-statistic algorithm to find theith largest number, partition around that
number, and sort thei largest numbers.

Solution:

Select the i-th largest number using SELECT,Θ(n), call partition,Θ(n), and then sort
thei largest numbers,Θ(i lg i). So our algorithm takesΘ(n+ i lg i).

Problem 3-2. At the wading pool

You work at a summer camp which holds regular outings for then children which attend. One of
these outings is to a nearby wading pool which always turns out to be something of a nightmare at
the end because there aren wet, cranky children and a pile of2n shoes (n left shoes andn right
shoes) and it is not at all clear which kids go with which shoes. Not being particularly picky, all
you care about is getting kids into shoes that fit. The only way to determine if a shoe is a match for
a child is to try the shoe on the child’s foot. After trying on the shoe, you will know that it either
fits, is too big, or is too small. It is important to note that you cannot accurately compare children’s
feet directly with each other, nor can you compare the shoes. You know that for every kid, there
are at least two shoes (one left shoe and one right shoe) that will fit, and your task is to shoe all of
the children efficiently so that you can go home. There are enough shoes that each child will find
a pair which fits her. Assume that each comparison (trying a shoe on a foot) takes one time unit.



Handout 17: Problem Set 3 Solutions 3

(a) Describe a deterministic algorithm that usesΘ(n2) comparisons to pair children with
shoes.

Solution:

For each child, try on all the shoes until you find the two shoes that fit.T (n) =
T (n− 2) +O(n) = Θ(n2).

(b) Prove a lower bound ofΩ(n lg n) for the number of comparisons that must be made
by an algorithm solving this problem. (Hint: How many leaves does the decision tree
have?)

Solution:

There aren! ways that left shoes can be assigned to children andn! ways that right
shoes can be assigned to children. So the decision tree should haven!2 leaves.
n!2 ≥ n!
h ≥ lg(n!)
h ≥ lg (n

e
)n by Stirling’s Approximation

= n lg n− n lg e
= Ω(n lg n)

(c) How might you partition the children into those with a smaller shoe size than a “pivot”
child, and those with a larger shoe size than the pivot child?

Solution:

Take the pivot child and try on all the shoes until you find one that fits. This should
takeΘ(n) time as there are2n shoes. Then try the shoe on all the children. If the shoe
is too small, then they have larger feet than the pivot child. If the shoe is too big, then
they have smaller feet than the pivot child. This should also takeΘ(n) time making
our partition algorithm run in linear time.

(d) Give a randomized algorithm whose expected number of comparisons isO(n lg n),
and prove that this bound is correct. What is the worst-case number of comparisons
for your algorithm?

Solution:

This is similar to quicksort. Pick a random child. Partition the children around that
child as in part (c). Then take the shoe you used to partition the children and partition
the shoes around it. Take the two shoes and pivot child and put them in the group of
paired children. Then recurse on the two groups of shoes and children. This should
have the same analysis as randomized quicksort because we have only added an extra
call to partition which will still make the work done at each levelΘ(n).


