
Introduction to Algorithms September 7, 2001
Massachusetts Institute of Technology 6.046J/18.410J
Singapore-MIT Alliance SMA5503
Professors Erik Demaine, Lee Wee Sun, and Charles E. Leiserson Handout 7

Problem Set 1

MIT students: This problem set is due in lecture onWednesday, September 19.

SMA students: This problem set is due after the videoconferencing session onWednesday, Septem-
ber 19.

Reading:Chapters 1–4, excluding§4.4;§28.2;§30.1.

Both exercises and problems should be solved, butonly the problemsshould be turned in.
Exercises are intended to help you master the course material. Even though you should not turn in
the exercise solutions, you are responsible for material covered by the exercises.

Mark the top of each sheet with your name, the course number, the problem number, your
recitation section, the date, and the names of any students with whom you collaborated.

MIT students: Each problem should be done on a separate sheet (or sheets) of three-hole punched
paper.

SMA students: Each problem should be done on a separate sheet (or sheets) of two-hole punched
paper.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up
should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of your essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudocode.

2. At least one worked example or diagram to show more precisely how your algorithm works.

3. A proof (or indication) of the correctness of the algorithm.

4. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Graders will be instructed to take off points for convo-
luted and obtuse descriptions.

Exercise 1-1. Do Exercise 2.3-5 on page 37 in CLRS.

Exercise 1-2. Do Exercise 2.3-7 on page 37 in CLRS.



2 Handout 7: Problem Set 1

Exercise 1-3. Do Exercise 3.1-1 on page 50 in CLRS.

Exercise 1-4. Do Exercise 4.1-6 on page 67 in CLRS.

Exercise 1-5. Rank the following functions by order of growth; that is, find an arrangement
g1, g2, . . . , g30 of the functions satisfyingg1 = Ω(g2), g2 = Ω(g3), . . . , g29 = Ω(g30). Parti-
tion your list into equivalence classes such thatf(n) andg(n) are in the same class if and only if
f(n) = Θ(g(n)).

lg(lg∗ n) (
√

2)lgn n2 n! en lg∗(nn)

3n n3 lg2 n lg(n!) n2+sinn n1/ lgn

1 lg∗(lg n) n · 2n nlg lgn lnn ln lnn

3lgn (lg n)lgn 2n n lg n
n∑
k=1

1

k

n∏
k=2

(
1− 1

k

)

Problem 1-1. Asymptotic notation for multivariate functions

The generalization of asymptotic notation from one variable to multiple variables is surprisingly
tricky. One proper generalization ofO-notation for two variables is the following:

Definition 1

O(g(m,n)) = {f(m,n) : there exist positive constantsm0, n0, andc such that
0 ≤ f(m,n) ≤ cg(m,n) for all m ≥ m0 or n ≥ n0} .

Consider the following alternative definition:

Definition 2

O′(g(m,n)) = {f(m,n) : there exist positive constantsm0, n0, andc such that
0 ≤ f(m,n) ≤ cg(m,n) for all m ≥ m0 andn ≥ n0} .

(a) Explain why Definition 2 is a “bogus” definition. That is, what anomalies does the
definition ofO′ permit that are counterintuitive? You may find it helpful to illustrate
your answer with a diagram of relevant regions of them× n plane.

Remarkably, famous computer scientists have used Definition 2 without being aware of its deficien-
cies. Nevertheless, their theorems and analyses carry over to Definition 1, because the functions
they analyzed satisfy two key properties.

The first property is “monotonicity”:



Handout 7: Problem Set 1 3

Definition 3 A two-variable functionf(m,n) is monotonically increasingif

f(m,n) ≤ f(m+ 1, n)

and
f(m,n) ≤ f(m,n+ 1)

for all nonnegativem andn.

(b) Explain this definition in plain English.

The second property is more complicated:

Definition 4 A two-variable functiong(m,n) is multiplicatively separableif there exist
a constantL ≥ 0 and two one-variable functions,a(m) andb(n), such that whenever
m ≥ 0, n ≥ 0, andg(m,n) ≥ L, we have

g(m,n) ≤ a(m) · g(m− 1, n)

and
g(m,n) ≤ b(n) · g(m,n− 1) .

Intuitively, increasing one argument of a multiplicatively separable functiong increases the value
of g by at most a multiplicative factor which can be bounded in terms of that argument itself,
independent of the other argument.

(c) For each of the following functionsg(m,n), argue thatg is multiplicatively separable.

i. g(m,n) = m+ n

ii. g(m,n) = m2n

iii. g(m,n) = 2m + 2n

v. g(m,n) = 2m+n

vi. g(m,n) = 22m+2n

(d) Prove that the following two functions are not multiplicatively separable:

i. g(m,n) = 2m·n

ii. g(m,n) = mn

Suppose thatf is monotonically increasing andg is multiplicatively separable. Suppose further
that f(m,n) = O′(g(m,n)), that is, there exist positive constantsm0, n0, andc such that0 ≤
f(m,n) ≤ cg(m,n) for all m ≥ m0 andn ≥ n0.

(e) Prove that there exists a constantr ≥ 0 such that

f(m,n) ≤ r · g (max(m,m0),max(n, n0))

for all nonnegativem andn.



4 Handout 7: Problem Set 1

(f) Prove that there exists a constants ≥ 0 such that

g (max(m,m0),max(n, n0)) ≤ s · g(m,n)

for all nonnegativem andn.

(g) Conclude thatf(m,n) = O(g(m,n)).

(h) (Extra credit.) Give a proper generalization ofΩ to two variables. Justify your defini-
tion.

Problem 1-2. Tree Traversal

The following pseudocode is a standard recursive tree-traversal algorithm for counting the number
of nodes in a treeR. The initial call is COUNT-NODES(root[R]).

COUNT-NODES(x)
1 if x = NIL

2 then return 0
3 else return1 + COUNT-NODES(left[x])

+ COUNT-NODES(right[x])

Definesize(x) to be the number of nodes in the subtree rooted at nodex ∈ R, and letT (x) denote
the worst-case running time of COUNT-NODES(x).

(a) Give a recurrence forT (x) in terms ofleft(x) andright(x).

(b) Use the substitution method to prove thatT (x) = O(size(x)).

A common compiler optimization of this code, calledtail recursion, is to replace one of the recur-
sive calls with a loop, resulting in the following pseudocode:

COUNT-NODES-TAIL (x)
1 s← 0
2 while x 6= NIL

3 do s← s+ 1 + COUNT-NODES-TAIL (left[x])
4 x← right[x]
5 return s

Let right i[x] denote theith right descendant ofx, that is,

right i[x] =

{
x if i = 0 ,
right[right i−1[x]] if i > 0 .

Consider the loop invariant

s = k +
k−1∑
i=0

COUNT-NODES-TAIL (left[right i[x]]), (1)



Handout 7: Problem Set 1 5

wherek ≥ 0 is the number of times thewhile loop (lines 2–4) in COUNT-NODES-TAIL has been
executed.

(c) Prove that if Equation (1) holds fork, then it holds fork + 1.

LetK(x) be the smallest positive integer for whichrightK(x)[x] = NIL .

(d) Prove that COUNT-NODES-TAIL returns

K(x) +
K(x)−1∑
i=0

COUNT-NODES-TAIL (left[right i[x]]) .

(e) Prove by induction that COUNT-NODES-TAIL (x) correctly computessize(x).

Problem 1-3. Polynomial multiplication

If we have two linear polynomialsax+b andcx+d, we can multiply them using the four coefficient
multiplications

m1 = a · c ,
m2 = a · d ,
m3 = b · c ,
m4 = b · d

to form the polynomial
m1x

2 + (m2 +m3)x+m4 .

(a) Give a divide-and-conquer algorithm for multiplying two polynomials of degree-boundn
based on this formula.

(b) Give and solve a recurrence for the worst-case running time of your algorithm.

(c) Show how to multiply two linear polynomialsax + b and cx + d using onlythree
coefficient multiplications.

(d) Give a divide-and-conquer algorithm for multiplying two polynomials of degree-boundn
based on your formula from part (c).

(e) Give and solve a recurrence for the worst-case running time of your algorithm.


