Introductionto Algorithms Decembef, 2001

Massachusettsistituteof Technology 6.046J/18.410J
Singapore-MITAlliance SMA5503
Professorg&rik DemaineLee WeeSun,andCharlesE. Leiserson Handout35

Algorithmic Programming Contest

The goal of this contestis to find interestingsliding-piecepuzzles. The programwhich can
assemblespecifiedsetsof piecesinto the most difficult puzzleswins The GrandPrize
$100, plus a cool puzzle. Othercontestentriesthat shov originality, creatvity, or higherthan-
averageperformancewill receve cashprizesandpuzzlesaswell.

The contestis opento studentsn 6.046J/18.410J/SMA5508ut it is only for fun, not credit.
Whetheryou participateor notwill notin any wayaffectyourfinal gradefor thecourse (Of course,
outstandingentriesmay stick out in the professors'mindsif you ever needa recommendation.)
Studentsnayenteraloneor in groups.ThecontesbeginsMonday DecembeB, 2001,andit ends
Monday Decemberl0, 2001. We provide you with samplecodethatis complete put inefficient.
To enter all you needto do is improve the provided code. We expecta goodsubmissiorcanbe
preparedn anevening.

1 TheProblem

Oneinterestingcategory of puzzleis the sliding-piecepuzzle Typically, oneis givenarectangular
box containingsereralrectangulapieceswhich mayslide aboutin the box without rotating. The
goalis usuallyto move a particularpieceto a particularlocationin thebox. For example hereis a
classicpuzzleknown asDad’s Puzzler

In this puzzle,the goalis to move the squarepiecein the upperleft to the lower left. The
shortessolutionrequiress9 moves. (Seebelow for the exactdefinitionof amove.)

We aregoingto considera generalizatiorof this kind of puzzle , whereneitherthe box nor the
piecesneedbe rectangular Instead,both kinds of shapewill be specifiedas2-dimensionabit-
vectorsrepresentinginionsof 1x1 squares(For example theclassic‘pentomino”shapesnaybe
representethis way — seehttp://www.xs4all.nl/"gp/pen tomin o.ht ml.)

2 Handout35: Algorithmic ProgrammingContest

Your programwill take asinputaboxshapeasetof “free” pieceshapesa (unique)goalpiece
shapeandagoallocation. Your taskis to designfrom theseasdifficult a puzzleaspossible.That
is, your outputshouldspecifya setof piecesdravn from theinput set,their startinglocations,and
aminimum-lengthsequencef moveswhich resultsin the goal piecearriving atthe goallocation.

Detailsaboutthe input andoutputformatsandrequirementsgor the implementatioraregiven
laterin this handout.Sampleimplementationsn C, C++, andJava have alsobeenprovided. You
areencouragedsethis codeasa startingpoint, but you shouldbe awarethatit is not particularly
efficient.

Your challengeis to apply your algorithmicandengineeringsensefrom this courseandelse-
where,to improve the performancef the provided codeor otherwisedevelopan efficient puzzle-
designingprogram. As a bonus,the betteryour programis, the more interestingpuzzlesit can
create!Particularlynice puzzlesmaybedistributedoutsideMIT, to aninternationacommunityof
puzzleenthusiasts.

2 Getting Started

We provide you with samplecodein C, C++, andJava. This codeparsesheinput, searchegvery
nawely) for interestingpuzzles,and prints the output. The samplecodeis now availableon the
coursewebsite.

You may enterthe contestby improving the suppliedcode,or by writing your own program,
in any languageyou wish. The only submisssiomequirements thatyou provide uswith simple
Unix/Linux build instructionssothatwe mayrunall submissionenthesameamachindor judging.
If youchoosenotto usethesuppliedcode,or have build instructiongdifferentfrom thoseprovided
with the samplecode,we adviseyou to contactusearlyto make surewe will beableto build your
programon our machine.

Your programmustreadits input datafrom standardnput, and print its solutionto standard
output.lt is likely thatfor mary of theinputspecificationsyour programwill notbeableto search
all possiblepuzzledsn ary reasonablamountof time. To makeit easieronyou, your programmay
print outmultiple solutionsandwewill judgeonly thelastsolutioncompletelyprintedbeforeyour
allottedtime runsout. The samplecodealreadydoesthis for you: it printsout eachnew solution
it findsthatis better(i.e. a moredifficult puzzle)thanthe previousbest.

Several sampleinputsare availableon the coursewebsitefor testingpurposeshut the actual
inputsusedfor judgingwill besecret.

Handout35: Algorithmic ProgrammingContest 3

3 Detailed Specification

Much of this sectioncanjust be skimmedbeforegettingstarted becausehe suppliedcodealready
handleghis specificationIf youruninto any specificquestionsthough,they shouldbe answered
here.

3.1 Solution Requirements

The problemis to find a difficult puzzleinstanceconsistentvith theinput specificationsYou are
givena box shapea list of “free” pieceshapesa uniquegoal pieceshapeanda goallocation.
With theseyou needto build a puzzle.You mayuseary of thefree pieceshapesasmary timesas
youwishin your puzzle,but the goalpiece(whichwill have auniqueshapemustbe usedexactly
once.Youdonotneedto considerotationsandreflectionsof the pieceshapesjustusethemin the
orientationsgn which they aregiven. (For someinputswe may give rotatedandreflectedversions
in theinput.)

Your puzzlewill be evaluatedon how complex a solutionit requires.This is definedto bethe
numberof movesneededo put the goal pieceinto the goal location. Note thatit is the required
solutionlengththat counts— it doesno goodto print out a solutionusing 100 moves,whenthe
puzzlecouldbesolvedin 20.

It is importantto notethe definition of a move. It's customaryto follow Martin Gardneythe
famousrecreationamathematiciananddeclarethatany kind of motioninvolving just onepiece
countsasa singlemove. A move canbe thoughtof asa sequencef unit shifts of a piece,each
onesliding the pieceup, left, down, or right. The suppliedcodecorrectlygeneratesll suchlegal
movesfrom a givenconfiguration.lf you rewrite this code,be sureyou alsofollow this definition
of amove, becausehatis how thetestingsoftwarewill countmoves.

3.2 Input Format

If you areusingthe suppliedcode,you canskim this section;we have written the input routines
for you. However, you may needto modify themto take into accountary datastructurechanges
you make.

Theinputto your programis in four sections:abox shapea setof “free” puzzlepieceshapes,
agoalpieceshapgdifferentfrom thefreeshapes)andagoalposition. Eachof theshapess given
asa2-dimensionabit-vector All positionsarerelativeto uppereft cornersof boundingrectangles
of shapesTheinputsectionsareseparatedy linescontaininga single‘-’ character

Eachbit-vectoris precededy a line containingits width and height. The bit-vector itself
follows, with oneline of text perrow. Eachline consistf space-separated and‘l’ characters.
‘1’ indicateghatsquards occupied;0’ indicatesghatsquardas empty For thebox shapethe‘0’s
definethe openspacethe piecescanoccuyy; arectangulabox would be all ‘0’s. For the pieces,
the’l’ s definethe shapeof the piece.Rectangulapiecesvould beall ‘1’s.

Thepieceshapdist is precededy a countof (non-goal)pieceshapes.

4 Handout35: Algorithmic ProgrammingContest

Hereis aninput specificatiorconsistentvith Dad’s Puzzler:

4 5
00O00O
00O00O
00O00O
00O00O
00O00O
3

11
1

12
1

1

21
11
22
11
11
03

Notethatthe goalposition“0 3” meanghattheupperleft cornerof the goal pieceshouldbe 0
unitsto theright and3 unitsdown from the upperleft cornerof the box. This would betrue even
if the upperleft cornerof the goal piecewerenot occupied(or if the upperleft cornerof the box
wereoccupied).

3.3 Output Format

If you areusingthe suppliedcode,you canskim this section;we have written outputroutinesfor
you. However, you may needto modify themto take into accountary datastructurechangesou
male.

You may print whatever delugging or visualizationoutputyou wish. Only outputbetween
thestringsBEGIN SOLUTIONandEND SOLUTIONwill countasprogramoutput;furthermore,
only the last suchoutputwill be counted. Within thosetwo strings,the outputmustconformto
thefollowing format. DO NOT CHANGE THIS OUTPUT FORMAT, or your outputmay not be
correctlyparsedoy our testingsoftware.

A solutionconsistsof threeoutputsections:the startingconfiguration the claimedminumum
solutionlength,andan actualsolutionof thatlength. The outputsectionsare separatedy lines
containingasingle’-’ character

Thestartingconfigurationspecifiedor eachpiecein your puzzlewhatshapsit is, andwhereit
starts.Eachline of the configurationshouldcontaina shapandex followedby a position,relative

Handout35: Algorithmic ProgrammingContest 5

to the upperleft cornerof the box. Shapesarenumberedstartingwith 0. If therearen free piece
shapesn the inputfile, they arenumbered..n — 1, andthe goal pieceis referredto asnumber
n. This configurationdefinesthe list of piecesin your puzzle. If thereare m pieces,they are
numbered)..m — 1 for usein thefollowing solutionoutput.

The solutionshouldbe printedone move perline, whereeachmove is givenasa pieceindex
to move, followed by ary numberof “up”, “left”, “right”, or “down” strings. Theseindicatethe
sequencef shiftsthattogethercountasa singlemove.

Hereis a sampleoutputfor Dad’s Puzzler:

EGIN SOLUTION

o
o

B
3
2
2
0
0
1
1
2
2

NNPFPOFODNNDN
A WWWNDNPEO

59

4 right right
3 right right
0 down

0 left
END SOLUTION

This shouldbe readasfollows: thefirst piecein the puzzle(piece0) is of shape3 (whichin
this casels the goalpiece),andit is in the upperleft cornerof the box; the next piece(piecel) is
of shape2, andits upperleft corneris two unitsto theright of the upperleft of the box, etc. The
solutiontakes59 moves. Thefirst moveis to move piece4 (whichis of shapeD - a unit square}o
theright two spacesThelastmove movesthe goalpieceinto the goal position(0 3).

(Thesamplecodealsoprintsa human-friendlypuzzlediagrambeforetheBEGIN SOLUTION
line.)

4 Strategy

Youareonyourown asto how to find thebestpuzzles!However, afew hintsto getyou startedare
in order Thefirstthingthatmustbesaidis thatto find thebestsolution,you mustdoanexponential
search As such,in asenseyour programcannotbe both optimalandefficient no matterwhat. But
thereis alot of roomfor clevernessn speedingip the move generatiorandevaluation,and,much
moreimportantly in weedingoutlarge sectionof the searchspacewith goodheursitics.

6 Handout35: Algorithmic ProgrammingContest

The secondthing that mustbe saidis that actually you mustdo two exponentialsearches!
Thatis, you aretrying to find difficult puzzlessoyou aresearchingver potentialpuzzlelayouts.
But for eachlayoutyou consideyyou mustfind the shortessolutionto thatlayout— this requires
anothersearch.

Hereis a patrtial list of techniquesyou may find useful: symmetrydetection,iteratve deep-
ening,A* searchhashing,Zobrist keys, caching,randomizedsampling,partial cover problems,
backtracksearchingnethods.

HerearesomepotentiallyusefulreferencesThe URLs arealsoon the coursewebpage.

Hordern,L. E. Sliding PiecePuzzlesOxford University PressOxford, 1986.

Winston,Patrick Henry Artificial Intelligence Addison-Wesley, third edition,1992.

http://www.john rausch.co m/Slid in gBl ockPuzzl es/ defa ul t. htm
http://www1.ics .uci .e du/ “e ppst ei n/1 80a/ 970408. ht ml

http://cogsci.u csd. edu/” batali /1 08b/l ectu re s/h euri stic .ht ml
http://www-cs-f acul ty .st anfo rd .e du/ "k nuth /p apers /d anci ng. ps.g z

http://www.sean et .c om™b rucemdt opi cs/z obri st. htm

5 Entering

If you areinterestedn enteringthe contestyou shouldsendmail to Bob Hearn,the TA in chage
of the contest,assoonaspossible. His email addresss rah@ai.mit.edu . He will createa
mailing list of all peopleinterestedn the contest.Any additionalinformation, clarifications,bug
fixes,etc. will besentto peopleon this mailing list. Thisinformationwill alsobeavailableonthe
coursewebpage soyou maywishto checkthereperiodically You shouldsendall questionshug
reports,andsoforth to Bob. He canalsobereachedy phoneat617-253-8576.

Whenyou arereadyto submityour programemailBob with instructionson whereto getyour
sourcefiles (for example,put a tarball on a webpageandsendthe URL), andhow to build them.
To repeatf youchoosenotto useour samplecode,or have build instructiongdifferentfrom those
provided with the samplecode,we adviseyou to contactus early to make surewe will be able
to build your programon our machine.We cannotguarante@cceptancef programshatarenot
straightforvardto build.

All submissionsnustberecevedby 12:00noon EST, Monday, December10,2001

We will compile andrun your codeon several inputs, rangingfrom very simple (i.e. small
box andfew pieces)to very complicated(i.e. large box and mary pieces). We expectthat no
submissiorwill beableto exhaustvely searcithe entirepuzzlespacegor someof theinputs.

For eachoutputpuzzle,the claimedsolutionlengthwill be verified by us. Invalid solutions
will bethrown out, somake sureyou getthe solutionlengthright! Correctnesss moreimportant
thanspeedsobesurenotto breakthe suppliedcode.

We will evaluateeachsubmissiorbasedn the (correct)solutioncompleity for all theinputs,
andonthetime usedfor therunsthatterminatebeforehitting thetimelimit. Theamountof runtime
grantedeachsubmissiorwill dependon how mary submissionshereare,but you shouldassume
someavherebetween5 minutesand 20 minutesper run. Eventhe suppliedcodewill be ableto
completethe searchn thistime for mary of theinputs.

Handout35: Algorithmic ProgrammingContest 7

For thosewho lik e to optimize, herearethe characteristicef the machinewe will be testing
on (mainmemoryis the mostimportantnumber):

Pentium4, 2GHzrunningLinux 2.4
256KB L2 cache

900MB mainmemory

2GB swap

6 SuppliedCode

We supplyworking codein C, C++, andJava. Theseprogramscorrectlyreadthe input specifica-
tions, searchfor puzzles,andprint out solutions. The setsof codeare suppliedastarballs. They
arenow availableon the coursewebpage For the Jara version,the javadocdocumentatiotis also
availableonthecoursewebpage.

Hereis the stratgyy the suppliedcodeuses:

1. Readpuzzlespecificatiorfrom input.

2. Searchthroughall possiblepuzzlelayouts. Try to fill eachvacantspotin the box in turn,
eitherwith someinput pieceshapeor with empty space.Whenthe entirebox is full, we
have a candidatepuzzle.Searchthelayoutfor solutions.

3. Solutionsearch:Do a breadth-firssearchstartingfrom the layout configuration searching
for configurationghathave thegoalpiecein thegoalposition. Stopwhenwe find a solution.

Therearea coupleof subtletieshere. The verticesin our graphcorrespondo puzzlecon-
figurationsthatarereachabldrom the startingconfiguration.But we don't have theseall in
anicelist; they areimplicitly defined.We generatenew configurationson thefly, by trying
all possiblemoves (graphedges)from eachconfigurationwe reach. In orderto keepthe
BFSfrom runningforever, we have to detectwhenwe reacha configurationwe’ve seerbe-
fore. Sowe storeall configurationsve’ve seenduringthis searchin anauxiliary list. Before
addinga new configurationto the BFS queue,we searchthis list (andthe queue)to make
surewe haven't alreadyseent.

The secondsubtletylies in the definitionof a move. In a singlemove, a singlepiececanbe
slid horizontallyor vertically (by oneunit) oneor moretimes. We useanotheBFSto find
all availablemovesof a piecefrom a givenconfiguration.

4. Whenwe find a solution,we know the minimumnumberof movesnecessaryo reachit, by
virtue of BFS. Print out the puzzleandits solutionif it’s longerthanthe previous longest
solution,andterminatethe solutionsearch.

5. Keeploopingthroughlayouts,until we finish or (morelik ely) run out of time!

For specificson classstructuresetc.,you shouldlook at the sourcefiles. They arereasonably
well-commented.

Goodluck, andhapygy hacking!

