
Introductionto Algorithms December3, 2001
MassachusettsInstituteof Technology 6.046J/18.410J
Singapore-MITAlliance SMA5503
ProfessorsErik Demaine,LeeWeeSun,andCharlesE. Leiserson Handout35

Algorithmic Programming Contest

The goal of this contestis to find interestingsliding-piecepuzzles.The programwhich can
assemblespecifiedsetsof piecesinto the most difficult puzzleswins The GrandPrize:
$100,plus a cool puzzle. Othercontestentriesthat show originality, creativity, or higher-than-
averageperformancewill receivecashprizesandpuzzlesaswell.

Thecontestis opento studentsin 6.046J/18.410J/SMA5503,but it is only for fun, not credit.
Whetheryouparticipateornotwill notin any wayaffectyourfinalgradefor thecourse.(Of course,
outstandingentriesmay stick out in the professors’mindsif you ever needa recommendation.)
Studentsmayenteraloneor in groups.ThecontestbeginsMonday, December3, 2001,andit ends
Monday, December10, 2001. We provide you with samplecodethat is complete,but inefficient.
To enter, all you needto do is improve theprovidedcode. We expecta goodsubmissioncanbe
preparedin anevening.

1 The Problem

Oneinterestingcategoryof puzzleis thesliding-piecepuzzle. Typically, oneis givenarectangular
box containingseveralrectangularpieces,which mayslideaboutin thebox without rotating.The
goalis usuallyto moveaparticularpieceto aparticularlocationin thebox. For example,hereis a
classicpuzzleknown asDad’sPuzzler:

In this puzzle,the goal is to move the squarepiecein the upperleft to the lower left. The
shortestsolutionrequires59moves.(Seebelow for theexactdefinitionof amove.)

We aregoingto considerageneralizationof this kind of puzzle,whereneitherthebox nor the
piecesneedbe rectangular. Instead,both kinds of shapewill be specifiedas2-dimensionalbit-
vectors,representingunionsof 1x1squares.(For example,theclassic“pentomino”shapesmaybe
representedthis way– seehttp://www.xs4all.nl/˜gp/pen tomin o.ht ml .)

2 Handout35: Algorithmic ProgrammingContest

Yourprogramwill takeasinputaboxshape,asetof “free” pieceshapes,a (unique)goalpiece
shape,anda goallocation.Your taskis to designfrom theseasdifficult apuzzleaspossible.That
is, youroutputshouldspecifyasetof piecesdrawn from theinputset,their startinglocations,and
aminimum-lengthsequenceof moveswhich resultsin thegoalpiecearriving at thegoallocation.

Detailsabouttheinput andoutputformatsandrequirementsfor theimplementationaregiven
later in this handout.Sampleimplementationsin C, C++, andJava have alsobeenprovided. You
areencouragedusethis codeasa startingpoint,but you shouldbeawarethatit is not particularly
efficient.

Your challengeis to applyyour algorithmicandengineeringsense,from this courseandelse-
where,to improve theperformanceof theprovidedcodeor otherwisedevelopanefficient puzzle-
designingprogram. As a bonus,the betteryour programis, the more interestingpuzzlesit can
create!ParticularlynicepuzzlesmaybedistributedoutsideMIT, to aninternationalcommunityof
puzzleenthusiasts.

2 Getting Started

We provide you with samplecodein C, C++, andJava. This codeparsestheinput,searches(very
naively) for interestingpuzzles,andprints the output. The samplecodeis now availableon the
coursewebsite.

You mayenterthecontestby improving thesuppliedcode,or by writing your own program,
in any languageyou wish. Theonly submisssionrequirementis thatyou provide uswith simple
Unix/Linux build instructions,sothatwemayrunall submissionsonthesamemachinefor judging.
If youchoosenot to usethesuppliedcode,or havebuild instructionsdifferentfrom thoseprovided
with thesamplecode,weadviseyou to contactusearlyto makesurewewill beableto build your
programon our machine.

Your programmustreadits input datafrom standardinput, andprint its solutionto standard
output.It is likely thatfor many of theinputspecifications,yourprogramwill notbeableto search
all possiblepuzzlesin any reasonableamountof time. To makeit easieronyou,yourprogrammay
print outmultiplesolutions,andwewill judgeonly thelastsolutioncompletelyprintedbeforeyour
allottedtime runsout. Thesamplecodealreadydoesthis for you: it printsout eachnew solution
it findsthatis better(i.e. amoredifficult puzzle)thanthepreviousbest.

Several sampleinputsareavailableon thecoursewebsitefor testingpurposes,but theactual
inputsusedfor judgingwill besecret.

Handout35: Algorithmic ProgrammingContest 3

3 DetailedSpecification

Muchof thissectioncanjustbeskimmedbeforegettingstarted,becausethesuppliedcodealready
handlesthis specification.If you run into any specificquestions,though,they shouldbeanswered
here.

3.1 Solution Requirements

Theproblemis to find a difficult puzzleinstanceconsistentwith theinput specifications.You are
given a box shape,a list of “free” pieceshapes,a uniquegoal pieceshape,anda goal location.
With theseyou needto build apuzzle.You mayuseany of thefreepieceshapesasmany timesas
youwish in your puzzle,but thegoalpiece(whichwill haveauniqueshape)mustbeusedexactly
once.Youdonotneedto considerrotationsandreflectionsof thepieceshapes;justusethemin the
orientationsin which they aregiven. (For someinputswe maygive rotatedandreflectedversions
in theinput.)

Your puzzlewill beevaluatedon how complex a solutionit requires.This is definedto bethe
numberof movesneededto put thegoalpieceinto thegoal location. Note that it is the required
solutionlengththat counts– it doesno goodto print out a solutionusing100 moves,whenthe
puzzlecouldbesolvedin 20.

It is importantto notethedefinitionof a move. It’ s customaryto follow Martin Gardner, the
famousrecreationalmathematician,anddeclarethatany kind of motion involving just onepiece
countsasa singlemove. A move canbe thoughtof asa sequenceof unit shifts of a piece,each
onesliding thepieceup, left, down, or right. Thesuppliedcodecorrectlygeneratesall suchlegal
movesfrom a givenconfiguration.If you rewrite this code,besureyou alsofollow this definition
of amove,becausethatis how thetestingsoftwarewill countmoves.

3.2 Input Format

If you areusingthesuppliedcode,you canskim this section;we have written the input routines
for you. However, you mayneedto modify themto take into accountany datastructurechanges
youmake.

Theinput to yourprogramis in four sections:abox shape,asetof “free” puzzlepieceshapes,
agoalpieceshape(differentfrom thefreeshapes),andagoalposition.Eachof theshapesis given
asa2-dimensionalbit-vector. All positionsarerelativeto upperleft cornersof boundingrectangles
of shapes.Theinput sectionsareseparatedby linescontainingasingle‘-’ character.

Eachbit-vector is precededby a line containingits width and height. The bit-vector itself
follows,with oneline of text perrow. Eachline consistsof space-separated‘0’ and‘1’ characters.
‘1’ indicatesthatsquareis occupied;‘0’ indicatesthatsquareis empty. For theboxshape,the‘0’s
definetheopenspacethepiecescanoccupy; a rectangularbox would beall ‘0’s. For thepieces,
the’1’sdefinetheshapeof thepiece.Rectangularpieceswouldbeall ‘1’s.

Thepieceshapelist is precededby acountof (non-goal)pieceshapes.

4 Handout35: Algorithmic ProgrammingContest

Hereis aninput specificationconsistentwith Dad’sPuzzler:

4 5
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
-
3
1 1
1
1 2
1
1
2 1
1 1
-
2 2
1 1
1 1
-
0 3

Notethatthegoalposition“0 3” meansthattheupperleft cornerof thegoalpieceshouldbe0
units to theright and3 unitsdown from theupperleft cornerof thebox. This would betrueeven
if theupperleft cornerof thegoalpiecewerenot occupied(or if theupperleft cornerof thebox
wereoccupied).

3.3 Output Format

If you areusingthesuppliedcode,you canskim this section;we have written outputroutinesfor
you. However, you mayneedto modify themto take into accountany datastructurechangesyou
make.

You may print whatever debuggingor visualizationoutputyou wish. Only outputbetween
thestringsBEGIN SOLUTIONandEND SOLUTIONwill countasprogramoutput;furthermore,
only the last suchoutputwill be counted.Within thosetwo strings,the outputmustconformto
thefollowing format. DO NOT CHANGE THIS OUTPUTFORMAT, or your outputmaynot be
correctlyparsedby our testingsoftware.

A solutionconsistsof threeoutputsections:thestartingconfiguration,theclaimedminumum
solutionlength,andan actualsolutionof that length. The outputsectionsareseparatedby lines
containingasingle’-’ character.

Thestartingconfigurationspecifiesfor eachpiecein yourpuzzlewhatshapeit is, andwhereit
starts.Eachline of theconfigurationshouldcontaina shapeindex followedby a position,relative

Handout35: Algorithmic ProgrammingContest 5

to theupperleft cornerof thebox. Shapesarenumberedstartingwith 0. If thereare � freepiece
shapesin the input file, they arenumbered

����� ����� , andthegoal pieceis referredto asnumber
� . This configurationdefinesthe list of piecesin your puzzle. If thereare 	 pieces,they are
numbered

�
��� 	 ��� for usein thefollowing solutionoutput.
Thesolutionshouldbeprintedonemove per line, whereeachmove is givenasa pieceindex

to move, followedby any numberof “up”, “left”, “right”, or “down” strings. Theseindicatethe
sequenceof shiftsthattogethercountasasinglemove.

Hereis asampleoutputfor Dad’sPuzzler:

BEGIN SOLUTION
3 0 0
2 2 0
2 2 1
0 0 2
0 1 2
1 0 3
1 1 3
2 2 3
2 2 4
-
59
-
4 right right
3 right right
0 down
...
0 left
END SOLUTION

This shouldbe readasfollows: thefirst piecein thepuzzle(piece0) is of shape3 (which in
this caseis thegoalpiece),andit is in theupperleft cornerof thebox; thenext piece(piece1) is
of shape2, andits upperleft corneris two units to theright of theupperleft of thebox, etc. The
solutiontakes59 moves.Thefirst move is to movepiece4 (which is of shape0 - a unit square)to
theright two spaces.Thelastmovemovesthegoalpieceinto thegoalposition(0 3).

(Thesamplecodealsoprintsahuman-friendlypuzzlediagrambeforetheBEGIN SOLUTION
line.)

4 Strategy

Youareonyourown asto how to find thebestpuzzles!However, a few hintsto getyoustartedare
in order. Thefirst thingthatmustbesaidis thatto find thebestsolution,youmustdoanexponential
search.As such,in asenseyourprogramcannotbebothoptimalandefficientnomatterwhat.But
thereis a lot of roomfor clevernessin speedingup themovegenerationandevaluation,and,much
moreimportantly, in weedingout largesectionsof thesearchspacewith goodheursitics.

6 Handout35: Algorithmic ProgrammingContest

The secondthing that must be said is that actually, you must do two exponentialsearches!
Thatis, you aretrying to find difficult puzzles,soyou aresearchingoverpotentialpuzzlelayouts.
But for eachlayoutyou consider, you mustfind theshortestsolutionto that layout– this requires
anothersearch.

Here is a partial list of techniquesyou may find useful: symmetrydetection,iterative deep-
ening,A* search,hashing,Zobrist keys, caching,randomizedsampling,partial cover problems,
backtracksearchingmethods.

Herearesomepotentiallyusefulreferences.TheURLs arealsoon thecoursewebpage.
Hordern,L. E. SlidingPiecePuzzles.Oxford UniversityPress,Oxford,1986.
Winston,PatrickHenry. Artificial Intelligence. Addison-Wesley, third edition,1992.

http://www.john ra us ch .co m/Sl id in gBl oc kPuz zl es/ defa ul t. htm
http://www1.ics .u ci .e du/ ˜e ppst ei n/1 80a/ 970408. ht ml
http://cogsci.u cs d. edu/˜ bata li /1 08b /l ec tu re s/h euri st ic .ht ml
http://www-cs-f ac ul ty .st anfo rd .e du/ ˜k nuth /p ape rs /d anci ng. ps .g z
http://www.sean et .c om/˜b ru ce mo/t opi cs /z obri st. ht m

5 Entering

If you areinterestedin enteringthecontest,you shouldsendmail to Bob Hearn,theTA in charge
of the contest,assoonaspossible.His email addressis rah@ai.mit.edu . He will createa
mailing list of all peopleinterestedin thecontest.Any additionalinformation,clarifications,bug
fixes,etc.will besentto peopleon this mailing list. This informationwill alsobeavailableon the
coursewebpage,soyoumaywish to checkthereperiodically. Youshouldsendall questions,bug
reports,andsoforth to Bob. Hecanalsobereachedby phoneat 617-253-8576.

Whenyouarereadyto submityourprogram,emailBobwith instructionsonwhereto getyour
sourcefiles (for example,put a tarballon a webpageandsendtheURL), andhow to build them.
To repeat:If youchoosenot to useoursamplecode,or havebuild instructionsdifferentfrom those
provided with the samplecode,we adviseyou to contactus early to make surewe will be able
to build your programon our machine.We cannotguaranteeacceptanceof programsthatarenot
straightforwardto build.

All submissionsmustbereceivedby 12:00noon EST, Monday, December10,2001.
We will compileandrun your codeon several inputs, rangingfrom very simple (i.e. small

box and few pieces)to very complicated(i.e. large box andmany pieces). We expect that no
submissionwill beableto exhaustively searchtheentirepuzzlespacefor someof theinputs.

For eachoutputpuzzle,the claimedsolutionlengthwill be verified by us. Invalid solutions
will bethrown out, somake sureyou get thesolutionlengthright! Correctnessis moreimportant
thanspeed,sobesurenot to breakthesuppliedcode.

Wewill evaluateeachsubmissionbasedon the(correct)solutioncomplexity for all theinputs,
andonthetimeusedfor therunsthatterminatebeforehitting thetimelimit. Theamountof runtime
grantedeachsubmissionwill dependon how many submissionsthereare,but you shouldassume
somewherebetween5 minutesand20 minutesper run. Even the suppliedcodewill be ableto
completethesearchin this time for many of theinputs.

Handout35: Algorithmic ProgrammingContest 7

For thosewho like to optimize,herearethecharacteristicsof themachinewe will be testing
on (mainmemoryis themostimportantnumber):

Pentium4, 2GHzrunningLinux 2.4
256KB L2 cache
900MB mainmemory
2GBswap

6 SuppliedCode

We supplyworking codein C, C++, andJava. Theseprogramscorrectlyreadtheinput specifica-
tions,searchfor puzzles,andprint out solutions.Thesetsof codearesuppliedastarballs. They
arenow availableon thecoursewebpage.For theJavaversion,thejavadocdocumentationis also
availableon thecoursewebpage.

Hereis thestrategy thesuppliedcodeuses:

1. Readpuzzlespecificationfrom input.

2. Searchthroughall possiblepuzzlelayouts. Try to fill eachvacantspot in the box in turn,
eitherwith someinput pieceshape,or with emptyspace.Whenthe entirebox is full, we
havea candidatepuzzle.Searchthelayoutfor solutions.

3. Solutionsearch:Do a breadth-firstsearch,startingfrom thelayoutconfiguration,searching
for configurationsthathavethegoalpiecein thegoalposition.Stopwhenwefind asolution.

Therearea coupleof subtletieshere. The verticesin our graphcorrespondto puzzlecon-
figurationsthatarereachablefrom thestartingconfiguration.But we don’t have theseall in
a nicelist; they areimplicitly defined.We generatenew configurationson thefly, by trying
all possiblemoves(graphedges)from eachconfigurationwe reach. In order to keepthe
BFSfrom runningforever, we have to detectwhenwe reacha configurationwe’ve seenbe-
fore. Sowestoreall configurationswe’veseenduringthissearchin anauxiliary list. Before
addinga new configurationto the BFS queue,we searchthis list (andthe queue)to make
surewehaven’t alreadyseenit.

Thesecondsubtletylies in thedefinitionof a move. In a singlemove, a singlepiececanbe
slid horizontallyor vertically (by oneunit) oneor moretimes. We useanotherBFSto find
all availablemovesof a piecefrom agivenconfiguration.

4. Whenwe find a solution,weknow theminimumnumberof movesnecessaryto reachit, by
virtue of BFS.Print out the puzzleandits solutionif it’ s longerthanthe previous longest
solution,andterminatethesolutionsearch.

5. Keeploopingthroughlayouts,until wefinishor (morelikely) run outof time!

For specificson classstructuresetc.,you shouldlook at thesourcefiles. They arereasonably
well-commented.

Goodluck, andhappy hacking!

