Problem 1: Key terms. Regular expression, generalized NFA, pigeon-hole principle, pumping lemma, pumping length, pumping up, pumping down.

Problem 2: True or False?
1. If \(L_1 \) and \(L_2 \) are regular, then \(L_1 \cup L_2 \) is regular.
2. If \(L_1 \) and \(L_2 \) are non-regular, then \(L_1 \cap L_2 \) is non-regular.
3. If \(L_1 \) is regular and \(L_2 \) is non-regular, then \(L_1 \cup L_2 \) is non-regular.
4. If \(L_1 \) is regular, \(L_2 \) is non-regular, and \(L_1 \cap L_2 \) is regular, then \(L_1 \cup L_2 \) is non-regular.

Problem 3: Regular Expressions. Write regular expressions for the following languages. The alphabet is \(\{0,1\}^* \).
1. \(A_1 = \{w|w \text{ contains at least two 0's}\} \).
2. \(A_2 = \{w|w \text{ contains an even number of 0's}\} \).
3. \(A_3 = \{w|w \text{ does not contain 100 as a substring}\} \).

Problem 4: Proving non-regularity: the Pumping Lemma. Prove that the following languages are not regular.
1. \(L_1 = \{0^i1^j0^k| k > i + j\} \).
2. \(L_2 = \{0^i1^j| j \text{ is a multiple of } i}\) .
3. \(L_3 = \{0^i1^j| i > j\} \).

Problem 5: Proving non-regularity using closure properties
1. \(L_5 = \{\text{0}^i\text{1}^j, i \neq j\} \)