Readings: Sipser, Chapter 8 (the whole chapter).

Problem 1: (Sipser Exercise 8.1) Show that for any function $f : N \to N$, where $f(n) \geq n$, the space complexity class $\text{SPACE}(f(n))$ is the same whether you define the class by using the single-tape TM model or the two tape read-only TM model.

Problem 2: (Sipser Problem 8.10) The Japanese game go-moku is played by two players, “X” and “O”, on a 19×19 grid. Players take turns placing markers, and the first player to achieve 5 of his/her markers consecutively in a row, column, or diagonal, is the winner. Consider this game generalized to an $n \times n$ board. Let

$$GM = \{\langle P \rangle \mid P \text{ is a position in generalized go-moku, where player “X” has a winning strategy} \}.$$

By a position we mean a board with markers placed on it, such as may occur in the middle of a play of the game. Show that $GM \in \text{PSPACE}$.

Problem 3: The proof of Savitch’s theorem, in Section 8.1, describes in general how one can simulate any $f(n)$-space-bounded nondeterministic Turing machine N with an $f^2(n)$-space-bounded deterministic Turing machine M. The key is a recursive computation of the CANYIELD relation, which reuses space.

Give a good upper bound on the running time of M on input w.

Problem 4: (Sipser Problem 8.12) Show that TQBF restricted to formulas where the part following the quantifiers is in conjunctive normal form is still PSPACE-complete.

Problem 5: (Sipser Problem 8.17) Let A be the language of properly nested parentheses. For example, $()$ and $((()))$ are in A, but $)$ is not. Show that A is in L.

Problem 6: Show:
1. $A \leq_L B \Rightarrow \bar{A} \leq_L \bar{B}$.
2. $A \leq_L B$ and $B \in \text{NL} \Rightarrow A \in \text{NL}$.
3. $A \leq_L B$ and $B \leq_L C \Rightarrow A \leq_L C$.

Problem 7: (Sipser 8.27) Recall that a directed graph is strongly connected if every two nodes are connected by a directed path in each direction. Let

$$\text{STRONGLY-CONNECTED} = \{\langle G \rangle \mid G \text{ is a strongly connected graph}\}.$$

Show that STRONGLY-CONNECTED is NL-complete.

Problem 8: This problem uses the ideas in the proof of Theorem 8.27.

Describe a nondeterministic log-space Turing machine M that decides the language

$$L = \{\langle G, s, m, k \rangle \mid G \text{ is a directed graph, } s \text{ is a node in } G, m, k \in \mathbb{N}, \text{ and exactly}

m \text{ nodes of } G \text{ are reachable from } s \in G \text{ by paths consisting of at most } k \text{ edges}\}.$$

12.1 (Fake)-1
That is, if exactly m nodes are reachable from $s \in G$ by paths of length at most k, than M must accept $\langle G, s, m, k \rangle$ on some computation path. On the other hand, if more or fewer than m nodes are reachable from $s \in G$ by paths of length at most k, then M must reject $\langle G, s, m, k \rangle$ on all computation paths.

Explain why M works correctly and why it works in log space.