This fake homework is intended as a study guide covering the material on class 22 (NP-complete problems).

Readings: Sipser, Section 7.5. Also (optionally) see Garey and Johnson's book, "Computers and Intractability: a Guide to NP-Completeness".

Problem 1: In class, we covered constructions reducing 3SAT directly to four other problems:

- $\mathrm{CLIQUE}=\{\langle G, k\rangle \mid G$ is an undirected graph with a k-clique $\}$,
- D-HAMPATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph with a Hamiltonian path from s to $t\}$,
- SUBSET-SUM $=\left\{\langle S, t\rangle \mid S=\left\{x_{1}, \ldots, x_{k}\right\}\right.$ and for some $\left\{y_{1}, \ldots, y_{\ell}\right\} \subseteq\left\{x_{1}, \ldots, x_{k}\right\}$, we have $\left.\Sigma y_{i}=t\right\}$, and
- 3-DIMENSIONAL-MATCHING $=\{\langle A, B, C, M\rangle \mid A, B, C$ are disjoint sets of size $n, M \subseteq A \times$ $B \times C$, a set of acceptable triples, such that $\exists M^{\prime} \subseteq M,\left|M^{\prime}\right|=n$, and each element of A, B, C appears exactly once in $\left.M^{\prime}\right\}$.

In this problem, we propose variations on the constructions that were presented and ask you whether they work or not, and why.

1. We modify the construction reducing 3SAT to CLIQUE by adding an edge between each pair of nodes in the same triple, unless the pair is contradictory (e.g., x and \bar{x}).
2. In the construction reducing 3SAT to HAMPATH, we constructed a diamond for each variable. The horizontal row contains $3 k+1$ nodes in addition to the two nodes on the ends belonging to the diamond (here k is the number of clauses in ϕ). Now, we try to make the reduction more efficient by cutting out the "separator" nodes in the diamond, reducing the size of the horizontal row by $\frac{1}{3}$.
3. In the construction reducing 3SAT to SUBSET-SUM, we used multisets, by including, for each clause C_{j}, two copies of a vector with a 1 in the position corresponding to C_{j}. Now we try to avoid the use of multisets by replacing one of these copies with a vector having a 2 in the position corresponding to C_{j}.
4. In the construction reducing 3SAT to RELAXED-3-DIMENSIONAL-MATCHING, we include all the same Truth Assignment triples as before. But we eliminate some of the Clause Satisfaction triples: now, for each clause C_{j}, we include only one of the three triples $\left(*, b_{j}^{\prime}, c_{j}^{\prime}\right)$ that were included before.

Problem 2: (Sipser 7.27) A coloring of a graph is an assignment of colors to its nodes so that no two adjacent nodes are assigned the same color. Let

$$
\begin{aligned}
3 C O L O R= & \{\langle G\rangle \mid \text { the nodes of } G \text { can be colored with three colors such that } \\
& \text { no two nodes joined by an edge have the same color }\} .
\end{aligned}
$$

Show that $3 C O L O R$ is NP-complete. (Hint: Use the following three subgraphs.)

Problem 3: The "Set Packing" problem is defined by the language SET-PACKING, which is $\{\langle C, k\rangle \mid C$ is a collection of finite sets, k is a positive integer, and C contains at least k disjoint sets. $\}$. Prove that SET-PACKING is NP-complete, by a reduction from 3-DIMENSIONAL-MATCHING or EXACT-3-COVER.

