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Problem 1:
True or False (15 points). Full credit will be given for correct answers. If you include justification for

your answers, you may obtain partial credit for incorrect answers.

1. True or False: The Post Correspondence Problem for a 3-letter alphabet is decidable.

False; PCP for any finite alphabet can be mapping-reduced to PCP for a 2-letter (binary) alphabet,

and PCP is undecidable.

2. True or False: The set
�

of all finite subsets of �������	��
 (that is,
�
� ����������������
	��� is finite � ) is a

countable set. (You can think of
�

as the set of all finite languages.)

True; consider that all finite languages are regular, and each regular language has at least

one corresponding DFA. We saw in class that the number of DFAs (or even TMs!) is

countably infinite.

3. True or False: Rice’s Theorem implies that ����������� is a Turing machine and � accepts the string 01
and � does not accept the string 10 � is undecidable.

True; this is a non-trivial property of of the language. The description of a machine that accepts

only 01 would have this property, while that of a machine that rejects all inputs would not.

4. True or False: The intersection of two Turing-recognizable languages must be Turing-recognizable.

True; given two recognizers �������! , we build a recognizer for the intersection of their languages,

�!" as follows: on input # , run � � and �  on # . If � � and �  both accept # , accept; else loop.
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5. True or False: If a language $ is recognized by a Turing machine, then $ is recognized by a one-stack,
one-counter machine (i.e., a machine that has one stack and one counter).

True; from Handout 10, we know that a two-counter machine is equivalent to a TM, and a

stack (e.g. over a unary stack alphabet) can simulate a counter.
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Problem 2: (20 points) Consider the following formal description of a Turing Machine � , where % �
��&�'��(& � �(&  ��&�"���&�)��(&�*,+.-(+0/�12��&�34/5/5+.641(� , 7 � �������	� , 8 � ���9�����;:<�2=>� . Assume that any unspecified transitions
go to &�*,+.-(+0/�1 .
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1. (6 points) Write out the accepting computation history of � on input ��� .

1. &�'����

2. :?& � �

3. :?��&��4=

4. :?&� @��=

5. :A:A&@3�/5/5+.6415=
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2. (6 points) Describe in a few words the behavior of � on input ��� .

It loops forever. (Specifically, it takes the = transition in & ) repeatedly,

walking down the right-side of the infinite tape.

3. (8 points) What language does � recognize?

$CB���D � �EBF�HG?��D(
4�IG?��B.�IG<��D�
	� ;
all the strings in ���9�����	
 that begin and end with the same symbol.
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Problem 3: (25 points) Let JLK�M � �N�.���@�@� accepts only a finite number of strings � .
1. (5 points) Does Rice’s Theorem apply to JLK�M ? Why or why not?

Rice’s Theorem applies.

1. � $CB���D�� being finite is a property of the language.

2. This property is non-trivial. The description of a TM that accepts O is in $CB���D ,
while the description of a TM that accepts 7C
 is not.

Prove the following two results about JLK�M . You may use any results proved in class or in Sipser’s
book, but if you do, then cite the results explicitly.

2. (10 points) JLK�M is not Turing-recognizable. (Hint: Use mapping reducibility.)

We show that
�QPSR

is mapping-reducible to JLK�M , and apply Corollary 5.23 from Sipser.

The reducing function T works as follows.

J =“On input �.����UQ� where � is a TM and U is a string,

1. Construct TM � using �.����UQ� as below.

2. Output �F�L� .”

� =“On input # ,

1. Run � on U .

2. If � accepts, accept.

3. If � rejects, reject.”

If � accepts U , $QBF�LD � 7I
 and thus � $CB.�LD�� ��V
. However if � fails to accept U ,

either by looping forever or rejecting, $CBF�LD � O and thus � $QBF�LD�� � � .
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3. (10 points) JLK�M is not Turing-recognizable, that is, JLK�M is not co-recognizable. (Hint: Use mapping
reducibility.)

We show that
�QPSR

is mapping-reducible to JLK�M , and apply Corollary 5.23 from Sipser.

The reducing function T works as follows.

J =“On input �.����UQ� where � is a TM and U is a string,

1. Construct TM � using �.����UQ� as below.

2. Output �F�L� .”

� =“On input # ,

1. Run � on U for # steps.

2. If � accepts, reject; otherwise accept.”

If � accepts U , then it must do so in a finite number of steps; thus, in this case, only a

finite number of inputs will be accepted by � . However if � fails to accept U ,

either by looping forever or rejecting, $CBF�LD � 7C
 and thus � $QBF�LD�� �WV
.
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Problem 4: (20 points) Define a Turing machine � to be almost-minimal if there does not exist another
Turing machine ��X such that $CB��YXZD � $QB.��D and �[���YX\�@�H] � �^�.���@� . That is, there is no machine that
recognizes the same language and has an encoding whose size is less than half of the size of �.��� .
Prove that there is no enumerator that outputs a set � consisting of an infinite number of almost-minimal
machine descriptions. (Hint: Use the recursion theorem.)

Assume for contradiction that such an enumerator _ exists. Now consider the following TM:

� =“On input # ,

1. Obtain, via the recursion theorem, own description �F�L� .
2. Run _ , letting it enumerate the machines in � until it produces some machine �a`

such that �[���b`����9cad��^�F�L�@� .
3. Simulate � ` on # .

4. If �b` accepts, accept; else reject.”

Clearly $CB.�LD � $CB��b`�D and �^�F�L�@�N] � �^�.�b`���� . So � shows that �b` is not almost-minimal.

But that contradicts the assumption that _ is producing only almost-minimal machines.
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Problem 5: (20 points) On your first day on your new job at SmartCompilers.com your boss assigns you
the task of adding the following new feature to the company’s development suite:

“Analyze the source code of a function, and verify that no array will ever be accessed out of bounds.
Output TRUE if the code is safe in this respect, and FALSE if for some inputs, the function will access an
array out of bounds.”

For example, the following program should fail the verification:

void sloppy_code(int k) {
int array[10];
for (int i=0; i<k; i++) { array[i]=i; }

}

Program e�fFg,h�h�i j�g�k�l should fail, because on input m � ��n , the array will be accessed at position 11 (i.e.,o�p�p�o irq^���4s � ����t ), which is outside its declared range of 10.
In your answers, you may assume that the behavior of the function is fully determined by its source

code and its inputs (i.e., it does not make any outside calls to libraries or other functions). Also assume for
simplicity that the only variables a function uses are (possibly unbounded) integers, and integer arrays.

1. (5 points) State your boss’ request as a language decision problem.

� � JL_ � �N�FJ����EJ is a function that does not permit an array to be accessed out of bounds �

2. (7 points) In order to prove to your boss that this task is impossible, show a mapping reduction from some
language we know is undecidable to � � JL_ (Hint: consider using _ PSRu� ����������$CB.��D � ON� , or if you
prefer you can even use _C (v R , the analogous language for 2-counter machines):

We will reduce _I (v R to � � JL_ by mapping each input of the form ��%��
to input of the form �F�L� , where the function � is described below:

� =“On input # ,

1. Declare two integers o �,w and an array �Iq n�s .
2. Simulate % on # using only o and w as counters.

3. If % accepts # , access � out of bounds (e.g., �Hq x	s � � ).”
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3. (8 points) Is � � JL_ recognizable? Co-recognizable? Neither? Both? Explain.

Co-recognizable only.

We can recognize � � JL_ as follows. On input �.��� , simulate � on every string in 7Q
 in parallel.

If � ever tries to access an array out of bounds, accept.

Since � � JL_ is undecidable, it cannot also be recognizable.


