
6.045J/18.400J: Automata, Computability and Complexity Prof. Nancy Lynch, Nati Srebro

6.045 Final Exam Solutions
May 18, 2004 Susan Hohenberger

Name:

• Please write your name on each page.

• This exam is open book, open notes.

• There are two sheets of scratch paper at the end of this exam.

• Questions vary substantially in difficulty. Use your time accordingly.

• If you can not produce a full proof, clearly state partial results for partial credit.

• Good luck!

Problem Points Grade

1 40

2 20

3 20

4 20

5 20

6 20

7 20

Total 160

final-1

Name:

Problem 1: Multiple Choice Questions. (40 points, 4 points for each question)
For each question, any number of the listed answers may be correct. Clearly place an “X” in the box next

to each of the answers that you are selecting.

1. Which of the following are known to be true?

X If language A is recognized by an NFA, then the complement of A must also be recognizable by
an NFA.

X The complement of every Turing-decidable language is Turing-decidable.

NP = coNP.

X NL = coNL.

2. Which of the following are true statements about the sizes of various kinds of representations of regular
languages?

X Every language recognizable by a DFA with n states is recognizable by some NFA with n states.

Every language recognizable by an NFA with n states is recognizable by some DFA with n
states.

X Every language describable by a length n regular expression is recognizable by an O(n)-state
NFA.

If two languages A, B are recognized by two (potentially different) DFAs with n states, than the
language A ∪ B can be recognized by a DFA with at most 2n + 1 states.

3. Which of the following languages are Turing-recognizable?

{〈M〉| M is a (deterministic) Turing machine and M accepts 010}.

{〈M〉| M is a nondeterministic Turing machine and M accepts 010}.

{〈M〉| M is a Turing machine and M does not accept 101}.

{〈M〉| M is a Turing machine and L(M) = Σ∗}.

4. Which of the following languages can be shown to be undecidable by a direct application of Rice’s
theorem?

{〈M〉| M is a DFA and M accepts 010}.

X {〈M〉| M is a Turing machine and M accepts 010}.

X {〈M〉| M is a Turing machine and M accepts 010 and does not accept 101}.

{〈M〉| M is a minimal Turing machine, that is, no Turing machine with a smaller representation
recognizes the same language}.

Name:

5. Which of the following are decidable relative to the Post Correspondence Problem (PCP)? (That is,
which are decidable by an oracle Turing machine that uses an oracle for PCP?)

The acceptance problem for oracle Turing machines relative to PCP.

X ATM , the acceptance problem for ordinary Turing machines.

X The problem of whether L(M) contains 010 and does not contain 101.

X The emptiness problem (that is, does L(M) = ∅?) for ordinary Turing machines.

6. Which of the following are known to be true?

X CLIQUE ≤P VERTEX-COVER.

X CLIQUE ≤P 3SAT.

TQBF ≤P HAMCYCLE.

X PATH ≤P {6045}.

7. Which of the following are known to be in NP?

L1 − L2, for all L1, L2 in NP.

X L1 ∩ L2, for all L1, L2 in NP.

ATM , the complement of the acceptance problem for Turing machines.

X PATH.

8. Which of the following are known to be true statements about log space reducibility?

X Any log space transducer runs in polynomial time.

X ≤L is transitive.

X If A ≤L B and B ∈ NL, then A ∈ NL.

For all languages A and B, if A ≤P B, then A ≤L B.

Name:

9. Which of the following are true statements about Savitch’s theorem and its proof?

Savitch’s theorem implies that NSPACE(log n) = SPACE(log n).

X Savitch’s theorem implies that NSPACE(n2) ⊆ SPACE(n4).

In the proof of Savitch’s theorem, when the simulating Turing machine computes CANYIELD
recursively, it chooses the midpoint configuration nondeterministically.

When the simulating Turing machine computes CANYIELD recursively, it uses space approxi-
mately equal to the sum of the space bounds used by the two recursive calls to CANYIELD, plus
space to record the midpoint configuration.

10. Consider a language L, and a probabilistic polynomial time Turing machine M such that M always
accepts words in L, and for any word w not in L, M rejects w with probability at least 1/10. Which of
the following must be true?

X L ∈ BPP

L ∈ RP

X L ∈ coRP

L ∈ NP

Name:

Problem 2: Regular Languages. (20 points) Provide solutions with brief justifications.

1. Find regular languages L1, L2 over {a, b} for which L1 6⊆ L2, L2 6⊆ L1 (i.e., they are not equal and
neither is a subset of the other), and (L1 ∪ L2)

∗ = L∗
1 ∪ L∗

2.

Let L1 = {a}, L2 = {aa}, then neither is a subset of the other and (L1 ∪ L2)
∗ = L∗

1 ∪ L∗
2 = a∗.

2. Find a regular language L1 and a non-regular language L2 such that L1 ∩ L2 is non-regular and yet
L1 ∪ L2 is regular.

Let L1 = {0}∗, L2 = {0i| i is prime}, then L1 ∩ L2 = L2 and L1 ∪ L2 = L1.

Name:

THIS PAGE IS INTENTIONALLY LEFT BLANK.

Name:

Problem 3: Undecidability. (20 points) Let L = {〈M〉| M is a basic Turing machine that accepts 11
and does not accept 00}. Use the Recursion Theorem to prove that L is undecidable. Fill in the blanks in the
proof below.

Proof: For the sake of contradiction, assume that D is a decider Turing machine for L; that
is, D accepts 〈M〉 if M accepts 11 and does not accept 00, and D rejects 〈M〉 if M does
not accept 11 or does accept 00.

Then define a new Turing machine R, as follows:

R=“On input w,

Obtain own description 〈R〉 via the Recursion Theorem.

Run D on input .

If this computation accepts then

accept w if and

reject w if .

On the other hand, if this computation rejects then

accept w if and

reject w if .”

If R

then D ,

which means R ,

which is a contradiction.

On the other hand, if R

then D ,

which means R ,

which is again a contradiction. .

Name:

Solution 3:
R: On input w:

Obtain 〈R〉
Run D on input 〈R〉.
If this computation accepts then

accept if w = 00
reject if w 6= 00

On the other hand, if this computation rejects then
accept if w = 11
reject if w 6= 11

If R accepts 11 and does not accept 00, then D on input 〈R〉 accepts,
which means R accepts 00 and does not accept 11, which is a contradiction.
On the other hand,
If R does not accept 11 or does accept 00, then D on input 〈R〉 rejects,
which means that R accepts 11 and R does not accept 00,
which is again a contradiction.

Name:

Problem 4: Solitaire. (20 points) Consider the following solitaire game. You are given an m × k board
where each one of the mk positions may be empty or occupied by either a red stone or a blue stone. Initially,
some configuration of stones is placed on the board. Then, for each column you must remove either all of the
red stones in that column or all of the blue stones in that column. (If a column already has only red stones
or only blue stones in it then you do not have to remove any further stones from that column.) The objective
is to leave at least one stone in each row. Finding a solution that achieves this objective may or may not be
possible depending upon the initial configuration. Let

SOLITAIRE = {〈G〉| G is a game configuration with a solution}.

Prove that SOLITAIRE is in NP.

Solution 4: It is easy to see that SOLITAIRE is in NP. The guess would be the (ordered) sequence of stones
to be removed. Checking involves determining if each sequence is valid (i.e, that all the blue/red stones in a
column have been removed), and determining if the resulting board has at least one stone in each row.

Name:

Prove that SOLITAIRE is NP-hard.

Solution 4: This problem smells like 3SAT !!
We reduce 3SAT to SOLITAIRE. Given a 3SAT instance with m clauses C1, C2, . . . , Cm and k variables

x1, x2, . . . , xk, we create an m × k SOLITAIRE board as follows:

• Each column of the board corresponds to a variable, and each row corresponds to a clause.

• For every cell (i, j), place a red stone in the cell, if variable xj occurs in clause Ci. Place a blue stone
in the cell if xj occurs in clause Ci. Else, place nothing on the cell.

We claim that the resulting solitaire board has a solution iff the 3SAT formula is satisfiable.
If the formula is satisfiable, we solve the solitaire board as follows: First remove the stones corresponding

to all the literals that were set to false by the satisfying assignment. i.e, if in the satisfying assignment, xj is
set to true, then remove all the blue stones, otherwise remove all the red stones. It is clear that each column
has either only red stones or only blue stones. Now, look at each row: we know that there is at least one
literal in each clause that was set to true. Since we did not remove any stones corresponding to true literals,
it follows that each row has at least one stone left (either red or blue).

Now, suppose there is a solution to the SOLITAIRE game. Consider each column – it has to consist of
either only red stones or blue stones or neither. If column j has only red stones, set xj = true, If it has only
blue stones, set xj = false, else set xj to some value (we dont care what it is). Now, look at the ith row.
We know that it has at least one stone left. Let the stone be in the jth column, and suppose the stone is red.
This means clause Ci has literal xj in it. But, since it is a red stone, we just set xj to true. Thus clause Ci is
satisfied. On the other hand, if the stone is blue, Cj has literal xj , and we just set xj to false. Thus, again Cj

is satisfied. It follows that the assignment we just constructed satisfies the formula.

Name:

Problem 5: NFA Equality. (20 points) Define EQNFA to be the equivalence problem for NFAs, that is,

EQNFA = {〈M1, M2〉| M1 and M2 are NFAs and L(M1) = L(M2)}.

Show that EQNFA is in PSPACE.

Solution 5: We show that EQNFA is in NPSPACE. i.e, there is a non-deterministic TM M that uses polyno-
mial space and decides EQNFA. Since NPSPACE = PSPACE, we are done.

Consider the DFAs D1 and D2 corresponding to the NFAs M1 and M2. (We will never actually construct
them, since they are going to be exponentially larger). How do we test if D1 and D2 are equivalent ? In a
theorem we proved in the class, we showed that it is enough to test all strings of length up to |D1||D2| to see
if there is some such string which D1 accepts, but D2 does not (or vice-versa). Since |D1| ≤ 2|M1| (the same
for D2), it is enough to test all strings of length upto 2|M1|2|M2|.

Now, assume that M1 and M2 are not equivalent. Then, from the above discussion, there exists a string
x of length at most ` = 2|M1|+|M2| such that the machines M1 and M2 decide differently on x. Let M1 =
(Q1, Σ, δ1, q

1
0 , F1) and M2 = (Q2, Σ, δ2, q

2
0 , F2). Our TM M does the following :

• Set States1 = φ, States2 = φ.

• For i = 1 to `, do:

• Guess the ith bit xi of the string x.

Note: i.e, If x = x1x2 . . . x`, then at any point of time, the machine guesses just one of
the bits xi of x. Thus, M does not have to store all of x in its tape.

• Compute States1 = δ1(States1, xi) and States2 = δ2(States2, xi).

• If States1 ∩F1 = φ and States2 ∩F2 6= φ, (or) States2 ∩F2 = φ and States1 ∩F1 6= φ, then
reject. Else continue to the next iteration of the for loop.

The correctness of this procedure, and the fact that it takes up only polynomial space are easy, and are left as
exercise to the reader.

Name:

Problem 6: Right on Target. (20 points) We define the following language

TARGET= {〈G, t〉| G is a directed graph, t is a node in G, and t is reachable
from every other node in G via a directed path}.

Show that TARGET is NL-hard.

Solution 6: To show that TARGET is NL-hard, we show that PATH ≤L TARGET. Informally, the idea
is to add directed edges from every node v in the graph to s. Let G = (V, E). Convert an instance
〈G, s, t〉 of PATH to an instance 〈G′, t〉 of TARGET, such that G′(V ′, E′) is such that V ′ = V , and
E′ = E ∪ {(v, s) | v ∈ V }.

Now, if there is a path from s to t in G, there is certainly a path from every node to t in G′. Just use the
new edges, in conjunction with the existing path from s to t. Conversely, if there is a path from all the nodes
in G′ to t, then, in particular, there is a path from s to t in G′. Wlog, assume that this is a simple path (that is,
it traverses no vertex twice). Which means, it does not use any of the “new edges” (since all the new edges
point to s). Thus, the same path is a path from s to t in G too.

Name:

Problem 7: Random World. (20 points) A language L has a probabilistic polynomial time Turing
machine M that accepts words in L with probability at least 2/3, rejects words not in L with probability at
least 2/3. Further, on any input w, M makes at most log2(|w|) coin tosses (that is, in every computation path
for input w, all but at most log2(|w|) of the steps are deterministic).

Prove that L ∈ P.

Solution 7: If there are at most log2(|w|) coin-tosses that the machine makes, then there are at most
2log

2
(|w|) = |w| possible values for the coins. Simulate the machine on each of these coin-tosses. Tally

the number of yes-answers and the number of no-answers. If the number of yes-answers is more than 2
3 of

the total number of answers, then accept w. If the number of no-answers is more than 2
3 of the total number

of answers, then reject w. This takes time |w|TM (|w|), which is polynomial in |w| (here, TM (|w|) is the
running time of M on w.). Thus L ∈ P .

Note: What about the intermediate cases (for instance, when the number of yes-answers is equal
to the number of no-answers) ? We know that such cases cannot arise, because of the property of
M (that it either gives a large number of yes-answers, or a large number of no-answers, never an
equal number of them).

Name:

END OF EXAM.

SCRATCH PAPER 1

Name:

SCRATCH PAPER

Name:

SCRATCH PAPER 2

