
6.045J/18.400J: Automata, Computability and Complexity Prof. Nancy Lynch, Nati Srebro

Quiz 3: Solutions
April 28, 2004 Susan Hohenberger

Please write your name in the upper corner of each page.

Q3-Solutions-1

Name:

Problem 1: True, False, or Unknown (18 points). In each case, say whether the given statement is
known to be TRUE, known to be FALSE, or currently not known either way. Full credit will be given for
correct answers. If you include justification for your answers, you may obtain partial credit for incorrect
answers.

1. True, False, or Unknown: P
�� NP.

Unknown; this is generally believed to be true, but it might not be.

2. True, False, or Unknown: The Hamiltonian path problem for undirected graphs is in P
(i.e., UHAMPATH= �������
	�������� is an undirected graph with a Hamiltonian path from 	 to ���).

Unknown; UHAMPATH is NP-complete. If P=NP, then UHAMPATH is in P.

If P
�� NP, then UHAMPATH is not in P.

3. True, False, or Unknown: NP � coNP = P.

Unknown; we know that P is contained within NP � coNP, but these sets might not be equal.

4. True, False, or Unknown: If SAT � P, then coNP
�� P.

False; SAT � P implies that ������� P. (Recall that P is closed under complement.)

Since ����� is coNP-complete, this would mean that coNP=P.

Name:

5. True, False, or Unknown: There exists a language that is not decidable in time ��� but is decidable in
time �� �� (where ! is the length of the input).

True; by the Time Hierarchy Theorem (see page 311 of Sipser).

6. True, False, or Unknown: Both of the following exist:

(a) A language � such that "$# �&%�')("*# .

(b) A language + such that "-, ��&%.')("*, .

True; see the discussion of this in Sipser section 9.2. Recall that " is closed under complement,

and in fact, so is the "-/ for any language 0 .

Name:

Problem 2: (12 points) The proof that SAT is NP-complete appears in Sipser’s book, p. 254-259. Part
of the main construction involves constructing a formula 132546.7 , which is expressed as the conjunction of
formulas saying that 2 8 3 windows of the tableau are “legal”. For each of the following, state whether they
represent legal windows.
Assume that the underlying polynomial-time NTM is of the form 9;:���<=�
>?�
@)�BADCE�BA�F�GHG��
A�I�7�JDK , where < �
�D L�����
M��
��� and > � �D N���E��M��B�L��OP� .

1. Legal or not:
0 ARQ 1
0 2 A�S , where 9TA�SE��M��
UVKW�X@�9TA Q ���DK .

Legal.

2. Legal or not:
0 1 2
A S 1 2

, where 9�A S �B�L�BU*KW�Y@�9�ADQZ�B �K for some ARQ .

Legal.

3. Legal or not:
0 1 2
1 1 2

, where 9TA�SZ���E�B[\K\�]@�9�A Q �B �K for some A Q and A�S .

Legal; the TM head could have been on the left and moved left.

4. Legal or not:
0 1 2
0 1 3

, where 9TA�SZ�
�N�BU*K\�Y@�9TA Q ��MEK for some A Q and A�S .

Not legal; the TM head needs to be to the right of the tape position it writes.

Name:

Problem 3: (10 points) Suppose that [Q , [PS , and [W^ are nontrivial languages over < � �D L���Z� .
Prove that if:

1. [Q`_�a [WSP�b[P^ ,
2. [WSc� NP, and

3. [^ � P,

then [\Qd� NP. You may invoke theorems proved in class and in the book, but if you do this, cite them
explicitly.

Since [^ � P, we know that it is also in NP.

Since NP is closed under intersection, we also know that [eS?�][P^ is in NP.

Finally, since [Q is reducible to a language in NP in polynomial time, then we have

a polynomial-time NTM that decides [5Q – it can go through the reduction to use the

polynomial-time NTM for [WS?�b[P^ .

Name:

Problem 4: (20 points) For any f , the language f -COLOR is defined to be the set of (undirected) graphs
whose vertices can be colored with at most f distinct colors, in such a way that no two adjacent vertices are
colored the same color. In class, we learned that 2-COLOR � P and 3-COLOR is NP-complete.

1. Prove that 4-COLOR is NP-complete.

Part 1. 4-COLOR is in NP. The coloring is the certificate (i.e., a list of nodes and colors).

The following is a verifier g for 4-COLOR.

g =“On input ����� % � ,
1. Check that % includes _dh colors.

2. Color each node of � as specified by % .
3. For each node, check that it has a unique color from each of its neighbors.

4. If all checks pass, accept; otherwise, reject.”

Part 2. 4-COLOR is NP-hard. We give a polynomial-time reduction from 3-COLOR to 4-COLOR.

The reduction maps a graph � into a new graph �ji such that �k� 3-COLOR if and only if

�*i 4-COLOR. We do so by setting �-i to � , and then adding a new node l and connecting l to

each node in �-i .

If � is 3-colorable, then �-i can be 4-colored exactly as � with l being the only node colored

with the additional color. Similarly, if �$i is 4-colorable, then we know that node l must be

the only node of its color – this is because it is connected to every other node in �ji . Thus,

we know that � must be 3-colorable.

This reduction takes linear time to add a single node and � edges.

Since 4-COLOR is in NP and NP-hard, we know it is NP-complete.

Name:

2. Assuming " ��m(" , for which values of fn�Xo is f -COLOR NP-complete? Briefly explain.

fbpq� . We know that 1-COLOR and 2-COLOR are in P, and that 3-COLOR and 4-COLOR

are NP-complete. In fact, we can reduce ! -COLOR to 9r!nsm�DK -COLOR, for !tpq� , by the

same way as above.

Name:

Problem 5: (20 points) Let � � 9;g Q �
guSE�
v$K be a “bipartite” undirected graph, that is, a graph whose
nodes are divided into two sets, g Q and guS , such that every edge in v connects a node in g Q to a node in guS .
The nodes in g Q are all labeled with non-negative integers. For example, � might look like the following:

311V1

V2

Some of the nodes in guS can be removed to leave a subset w xygzS . A subset w is called consistent
with � if every node in g Q which has been assigned a number { is connected to exactly { nodes in w . The
problem is to determine whether a consistent w exists. For example, one consistent w for the graph above
would be:

311V1

W

We formulate this problem as the language:|b}-~P�3� � ���T��� (���E� is a bipartite graph 9�g Q ��gLSE�Bv$K , (is an assignment of nonnegative integers to
g Q , and there exists w�x&guS that is consistent with � and (� .

(a) Show that
|n}$~?�3�

is in NP, using the certificate and verifier method.

The subset w�x�g�Q is the certificate.

The following is a verifier g for
|b}-~P���

.

g =“On input �B�T��� (��� % � ,
1. Test whether % is a set of nodes in gzS .
2. For each node ����g�Q , test that it is connected to exactly (9T��K nodes in w .

3. If all tests pass, accept; otherwise, reject.”

Name:

(b) Show that
|n}$~?�3�

is NP-hard, using a reduction from 3SAT.

We will show 3SAT _ a |b}-~P��� . The reduction maps a Boolean formula 1 to a graph �
and a numbering scheme (. Our variable gadget will be as follows: for each variable �3� ,
add one node to g Q with a label of 1 and add two nodes to g�S that correspond to �z� and �u� ,
then add two edges connecting the 1 node with both the nodes in g S . Setting a variable � �
to TRUE corresponds to selecting the node ��� to be in w .

Our clause gadget will be as follows: for each clause % J , add one node to g�Q with a label of 3

and add two “dummy” nodes to gzS , then add edges connecting the 3 node to the two dummy nodes

and to the three nodes in g S that correspond to the literals in % J .

We want to argue that this reduction is correct; that is, �;1��e� 3SAT if and only if �T��� (�\� |b}-~P�3� .

First, if ��1��5� 3SAT, then we can always find a consistent w as follows. Place into w each node

corresponding to the truth of a satisfying assignment for 1 (i.e., if � Q � TRUE, add the node �z� ;
else add �z�); this makes w consistent with all the ’1’ nodes in g Q . Next, for each ’3’ node, check

to see how many neighbors it has already in w (this cannot be more than 3, since each clause

can have at most 3 true literals). If a ’3’ node has less than 3 neighbors in w , supplement this

amount to 3 by adding the necessary dummy nodes. This makes w consistent with all the ’3’

nodes, and thus with all of g Q .

Secondly, we argue that if ����� (�5� |b}-~P��� , then 1 must be satisfiable. Our variable gadget

construction restricts only one of the two ���� �u� nodes to be in w (i.e., TRUE); and our clause

gadget requires that at least one node corresponding to a literal in % J is in w for each clause % J
(i.e., all clauses are TRUE).

So far, we have just argued that there exists a mapping from 3SAT to
|n}$~?�3�

. Now we need

to argue that this mapping can be done in polynomial-time. If 1 is a Boolean formula with {
variables and � clauses. Then, our variable gadget adds �E{ nodes and M){ edges to � , while

our clause gadget adds �)� nodes and �)� edges to � . (Note: that the size of (is linear in { .)

Thus, the size of � and (, constructed by trivial operations, is ��9T{YK�sd��9r��K , which is

polynomial in � 1�� .

Name:

Problem 6: (20 points) Suppose that we are given a polynomial time algorithm � (formally, a basic
deterministic TM) that decides membership in the language VERTEX-COVER = ���T����fN����� is an undirected
graph and � has a vertex cover of size _ f�� .

1. Describe a polynomial time algorithm that, given the representation of an undirected graph � , finds
the size of the smallest vertex cover of � . Your algorithm may use � as a “subroutine”. Explain why
your algorithm takes polynomial time.

For � � �E�
MN�������.�R� ��� , run � on �T���B�H� . Output the smallest value of � for which � accepts.

Let ��9B� ��� K be � ’s running time on �T����fN� (note that f _ � ���). Then our algorithm takes

� ��������9
� ��� K time, which is also polynomial.

Name:

2. Describe a polynomial time algorithm that, given the representation of an undirected graph � � 9;g?�
v$K ,
finds a smallest-size vertex cover of � (that is, a subset g�i3x&g such that for each edge ������u�-�Yv at
least one of � and � belongs to gji).

Use the algorithm from part (1) to determine the minimum size f .

Start with � � � . Then repeat until f � : Select any edge and for each of the two endpoints,

see if removing that vertex and all its incident edges leaves a smaller graph �ji that has a f���� cover.

(You can test for this by again running � on �T�$i;��f$�q�D� .) One of the two tests must succeed.

When you find out which, put that vertex into the final cover, and set � to be the remaining graph

with that vertex and its incident edges removed. Set f � f���� .

One endpoint of each edge must be in the smallest vertex cover. Thus, if ���Xg is in the smallest

vertex cover of size f (note, there may be many smallest vertex covers, but this algorithm will

find one of them), then it must take fj��� nodes to cover all the edges not touched by � . This

means that � will accept ���-i���f����R� where �*i is the graph � with � and all its incident edges

removed. Once � is found to be in the smallest vertex cover, we are only concerned with the edges

of � that � does not touch, so we removed � and its incident edges from the graph, decrement f ,

and repeat.

If �b�Yg is not in a smallest vertex cover of size f , then, by definition, this means that all edges

of � which are not incident to � cannot be covered with f��q� remaining nodes. Thus, the �
will not accept.

Since the algorithm in part 1 and � run in polynomial-time, then this algorithm does so as well,

with a multiplicative increase of ��9
� ��� K in the running time.

