Structural Induction

To prove $P(x)$ holds for all x in recursively defined set R, prove:

- $P(b)$ for each base case $b \in R$
- $P(c(x))$ for each constructor, c, assuming ind. hyp. $P(x)$

$E \subseteq \text{Even}$ by structural induction on $x \in E$ with ind. hyp. “x is even”

- 0 is even
- if n is even, then so is $n+2$, $-n$

Lemma: Every s in M has the same number of]'s and ['s.

Proof by structural induction on the definition of M
Matched Paren Strings M

Lemma: Every s in M has the same number of]'s and ['s.

Let $EQ ::= \{\text{strings with same number of }] \text{ and } [\}$

Lemma (restated): $M \subseteq EQ$

Structural Induction on M

Proof:

Ind. Hyp. $P(s) ::= (s \in EQ)$

Base case ($s = \lambda$):

λ has 0]'s and 0 ['s, so $P(\lambda)$ is true.

base case is OK

Structural Induction on M

Constructor step: $s = [r]t$

can assume $P(r)$ and $P(t)$

$\#]$ in $s = \#]$ in $r + \#]$ in $t + 1$

$\#[$ in $s = \#[$ in $r + \#[$ in $t + 1$

so $s = \text{ by } P(r) = \text{ by } P(t)$

so $P(s)$ is true **constructor case is OK**

Structural Induction on M

so by struct. induct.

$M \subseteq EQ$

QED
Lemma.

F18 is closed under taking derivatives:
if \(f \in F18 \), then \(f' \in F18 \)

Class Problem