Recursive Data

Recursive Definitions
Define something in terms of a simpler version of the same thing:
- **Base case(s)** that don't depend on anything else.
- **Constructor case(s)** that depend on simpler cases.

Example Definition: set E
Define set $E \subseteq \mathbb{Z}$, recursively:
- **Base case:** $0 \in E$
- **Constructor cases:**
 If $n \in E$, then
 1. $n + 2 \in E$, if $n \geq 0$;
 2. $-n \in E$, if $n > 0$.

Example Definition: set E
1. $n \in E$ and $n \geq 0$, then $n + 2 \in E$:
 0, 0+2, (0+2)+2, ((0+2)+2) +2
 0, 2, 4, 6, ...
2. $n \in E$ and $n > 0$, then $-n \in E$
 -2, -4, -6, ...
 all even numbers
Recursive Def: Extremal Clause

So, \(E \) contains the even integers
Anything Else? No!

• \(0 \in E \)
• If \(n \in E \) and \(n \geq 0 \), then \(n+2 \in E \)
• If \(n \in E \) and \(n > 0 \), then \(-n \in E \)
• That's All!

Extremal Clause
(Implicit part of definition)

Example Definition: set \(E \)

So \(E \) is exactly the Even Integers

Matched Paren Strings, \(M \)

set of strings, \(M \subseteq \{ \}, [] \) *
• Base: \(\lambda \in M \),
 (the empty string)
• Constructor:
 If \(s, t \in M \), then
 \[s \] \(t \in M \)
Matched Paren Strings M

strings $[s] \in M$

- $[] \quad s = \lambda \quad t = \lambda$
- $[\[] \quad s = [] \quad t = \lambda$
- $[] \quad s = \lambda \quad t = [\]$
- $[\[] \quad s = [] \quad t = [\]$
- $[\[] \quad s = [\] \quad t = \lambda$
- $\vdots \quad \vdots \quad \vdots$

not in M

strings starting with $]$ are not in M because

- λ does not start with $]$
- $[s] \in M$ does not start with $]$

and everything in M arises in one of these two ways

The 18.01 Functions, F_{18}

The set F_{18} of functions on \mathbb{R}:

- $\text{Id}_{\mathbb{R}}$, constant functions, and $\sin x$

if $f, g \in F_{18}$, then

- $f + g$, $f \cdot g$, $2f$,
- the inverse, f^{-1}, of f, and
- $f \circ g$ (the composition of f and g)

are in F_{18}.

Some functions in F_{18}:

- $-x = (-1) \cdot x$
- $\sqrt{x} = (x^2)^{(-1)}$ --- inverse
- $\cos x = (1 - (\sin x \cdot \sin x))^{1/2}$
- $\ln x = (2^x \log e)^{(-1)}$