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Consider the following static evaluator, H,  for hexapawn: 

 

100   if board is won by ‘o’ 

 

-100   if board is lost by ‘o’ 

 

∑𝑟𝑖
2 − ∑4 − 𝑟𝑗

2 otherwise, where 𝑟𝑖is the row of the 𝑖𝑡ℎ‘o’ 

   where 𝑟𝑗is the row of the 𝑗𝑡ℎ‘x’ 

 

Examples (Note: row numbering): 

 

 

 

Static value =3   Static value=7 

This construction makes the first player, ‘o’, the maximizing player. 
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You come across an abandoned game of hexapawn in the following state with ‘x’ to move: 

A1-A (20 points) Using the minimax algorithm to look 2 moves ahead, determine ‘x’s best move  

(2 moves ahead means you should be evaluating the board after ‘o’s  move). Mark the sequence 

of moves minimax considers optimal in the board below: 

A1-B (10 points) What is the value of the move for ‘x’? 
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38 Chapter 5. Adversarial Search

to have a value below –6, the remaining successors need not beconsidered.
f. The pursuer always wins if the tree is finite. To prove this, let the tree be rooted as

the pursuer’s current node. (I.e., pick up the tree by that node and dangle all the other
branches down.) The evader must either be at the root, in which case the pursuer has
won, or in some subtree. The pursuer takes the branch leadingto that subtree. This
process repeats at mostd times, whered is the maximum depth of the original subtree,
until the pursuer either catches the evader or reaches a leafnode. Since the leaf has no
subtrees, the evader must be at that node.

5.4 The basic physical state of these games is fairly easy to describe. One important thing
to remember for Scrabble and bridge is that the physical state is not accessible to all players
and so cannot be provided directly to each player by the environment simulator. Particularly
in bridge, each player needs to maintain some best guess (or multiple hypotheses) as to the
actual state of the world. We expect to be putting some of the game implementations online
as they become available.

5.5 Code not shown.

5.6 The most obvious change is that the space of actions is now continuous. For example,
in pool, the cueing direction, angle of elevation, speed, and point of contact with the cue ball
are all continuous quantities.

The simplest solution is just to discretize the action spaceand then apply standard meth-
ods. This might work for tennis (modelled crudely as alternating shots with speed and direc-
tion), but for games such as pool and croquet it is likely to fail miserably because small
changes in direction have large effects on action outcome. Instead, one must analyze the
game to identify a discrete set of meaningful local goals, such as “potting the 4-ball” in pool
or “laying up for the next hoop” in croquet. Then, in the current context, a local optimization
routine can work out the best way to achieve each local goal, resulting in a discrete set of pos-
sible choices. Typically, these games are stochastic, so the backgammon model is appropriate
provided that we use sampled outcomes instead of summing over all outcomes.

Whereas pool and croquet are modelled correctly as turn-taking games, tennis is not.
While one player is moving to the ball, the other player is moving to anticipate the opponent’s
return. This makes tennis more like the simultaneous-action games studied in Chapter 17. In
particular, it may be reasonable to deriverandomizedstrategies so that the opponent cannot
anticipate where the ball will go.

5.7 Consider aMIN node whose children are terminal nodes. IfMIN plays suboptimally,
then the value of the node is greater than or equal to the valueit would have ifMIN played
optimally. Hence, the value of theMAX node that is theMIN node’s parent can only be
increased. This argument can be extended by a simple induction all the way to the root.If
the suboptimal play byMIN is predictable, then one can do better than a minimax strategy.
For example, ifMIN always falls for a certain kind of trap and loses, then setting the trap
guarantees a win even if there is actually a devastating response forMIN . This is shown in
Figure S5.2.
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Figure S5.2 A simple game tree showing that setting a trap forMIN by playingai is a win
if MIN falls for it, but may also be disastrous. The minimax move is of coursea2, with value
−5.
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Figure S5.3 The game tree for the four-square game in Exercise 5.8. Terminal states are
in single boxes, loop states in double boxes. Each state is annotated with its minimax value
in a circle.

a. (5) The game tree, complete with annotations of all minimaxvalues, is shown in Fig-
ure S5.3.

b. (5) The “?” values are handled by assuming that an agent witha choice between win-
ning the game and entering a “?” state will always choose the win. That is, min(–1,?)
is –1 and max(+1,?) is +1. If all successors are “?”, the backed-up value is “?”.

c. (5) Standard minimax is depth-first and would go into an infinite loop. It can be fixed
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Figure S5.5 Pruning with chance nodes solution.

Generating the hash key directly from an array-based representation of the position
might be quite expensive. Modern programs (see, e.g., Heinz, 2000) carry along the hash
key and modify it as each new position is generated. Suppose this takes on the order of 20
operations; then on a 2GHz machine where an evaluation takes2000 operations we can do
roughly 100 lookups per evaluation. Using a rough figure of one millisecond for a disk seek,
we could do 1000 evaluations per lookup. Clearly, using a disk-resident table is of dubious
value, even if we can get some locality of reference to reducethe number of disk reads.

5.16

a. See Figure S5.5.

b. Given nodes 1–6, we would need to look at 7 and 8: if they were both +∞ then the
values of the min node and chance node above would also be+∞ and the best move
would change. Given nodes 1–7, we do not need to look at 8. Evenif it is +∞, the min
node cannot be worth more than−1, so the chance node above cannot be worth more
than−0.5, so the best move won’t change.

c. The worst case is if either of the third and fourth leaves is−2, in which case the chance
node above is 0. The best case is where they are both 2, then thechance node has value
2. So it must lie between 0 and 2.

d. See figure.

5.18 The general strategy is to reduce a general game tree to a one-ply tree by induction on
the depth of the tree. The inductive step must be done for min,max, and chance nodes, and
simply involves showing that the transformation is carriedthough the node. Suppose that the
values of the descendants of a node arex1 . . . xn, and that the transformation isax+b, where
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