Recitation 13 Solutions

1. (a) \(h_w(x_i) = w \cdot x_i \)

(b) \(J_n(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w \cdot x_i)^2. \)

(The factor of \(\frac{1}{n} \) is optional; it’s constant, so it doesn’t change the minimizing \(w. \))

(c) Take the derivative of \(J_n(w) \) with respect to each element of \(w \) (\(w_0 \) and \(w_1 \)) and set it to 0.

\[
\frac{\partial J_n}{\partial w_j} = -2 \sum_{i=1}^{n} (y_i - (w_0 x_{i0} + w_1 x_{i1})) x_{ij} = 0 \text{ for all } j.
\]

(Note that \(x_{i0} \) is always 1.)

(d) Yes. The formula is at the bottom of the first page of the handout.

(e) Yes, we’re just using an input vector that happens to be \(\langle 1, x, x^2 \rangle \) instead of \(\langle 1, x \rangle \).

2. See Figure 18.14 on page 722 of AIMA third edition. If I have time maybe I’ll scan it for you.
3.

1. 2-nearest-neighbor (equally weighted averaging)

2. regression trees (with leaf size 1)