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Margin of a point 
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" i # y i(w $ x i + b)
•  proportional to perpendicular 
distance of point xi to hyperplane 

 

kx

i!

k!



6.034 - Spring  • 5 

Margin of a point 

x1 

x2 

w

ix
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" i # y i(w $ x i + b)
•  proportional to perpendicular 
distance of point xi to hyperplane 

•  geometric margin is  
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Margin 

• Scaling w changes value of margin but not actual 
distances to separator (geometric margin) 

• Pick the margin to closest positive and negative 
points to be 1 
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Margin 

• Pick the margin to closest positive and negative 
points to be 1 

• Combining these 

 
• Dividing by length of w gives perpendicular 

distance between lines (2 x geometric margin) 
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Picking w to Maximize Margin 

• Pick w to maximize geometric margin 

• or, equivalently, minimize 

• or, equivalently, minimize 
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Picking w to Maximize Margin 

• Pick w to maximize geometric margin 

• or, equivalently, minimize 

• while classifying points correctly 

• or, equivalently, 
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Constrained Optimization 
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Constrained	  op5miza5on	  

x*=0 

No Constraint x ≥ -1 

x*=0 x*=1 

x ≥ 1 

How do we solve with constraints?  
 à Lagrange Multipliers!!!  



Lagrange	  mul5pliers	  –	  Dual	  variables	  

Introduce Lagrangian (objective): 

We will solve: 

Add Lagrange multiplier 

Add new 
constraint 

Why does this work at all??? 
•  min is fighting max! 
•  x<b à (x-b)<0 à maxα-α(x-b) = ∞ 

•  min won’t let that happen!! 
•  x>b, α>0à (x-b)>0 à maxα-α(x-b) = 0, α*=0 

•  min is cool with 0, and L(x, α)=x2 (original objective) 

•  x=b à α can be anything, and L(x, α)=x2 (original objective) 
•  Since min is on the outside, can force max to behave and 

constraints will be satisfied!!!  

Rewrite 
Constraint 
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Constrained Optimization 

i
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Convert to unconstrained optimization by incorporating 
the constraints as an additional term 
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Constrained Optimization 
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Convert to unconstrained optimization by incorporating 
the constraints as an additional term 
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To minimize expression:  
    minimize first (original) term, and  
    maximize second (constraint) term 
        since αi > 0, encourages constraints to be satisfied 
        but we want least “distortion” of original term… 
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Constrained Optimization 

i
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Convert to unconstrained optimization by incorporating 
the constraints as an additional term 
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To minimize expression:  
    minimize first (original) term, and  
    maximize second (constraint) term 
        since αi > 0, encourages constraints to be satisfied 
        but we want least “distortion” of original term… 

Method of Lagrange multipliers 

Lagrange multipliers 
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Maximizing the Margin 
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Maximizing the Margin 
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Maximizing the Margin 
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Only dot 
products of the 
feature vectors 

appear 

Substituting w* into L yields dual Lagrangian: 



6.034 - Spring  • 17 

Dual Lagrangian 

 
    

! 

max
"

L(")  subject to "iy
i

i

# = 0  and " i $ 0,%i



6.034 - Spring  • 18 

Dual Lagrangian 

 
In general, since αi >= 0, either  

  αi = 0: constraint is satisfied with 
no distortion at optimum w 
or  
  αi > 0: constraint is satisfied with 
equality (in this case xi is known as a 
support vector) 
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Dual Lagrangian 

 
In general, since αi >= 0, either  

  αi = 0: constraint is satisfied with no 
distortion at optimum w 
or  
  αi > 0: constraint is satisfied with equality          
(xi is known as a support vector) 
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Dual Lagrangian 

 
In general, since αi >= 0, either  

  αi = 0: constraint is satisfied with no 
distortion at optimum w 
or  
  αi > 0: constraint is satisfied with equality          
(xi is known as a support vector) 

 
 
 
•  Has a unique maximum vector 
•  Can be found using quadratic programming 

or gradient ascent 
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SVM Classifier 

• Given unknown vector u, predict class (1 or -1) as 
follows: 

• The sum is over k support vectors 
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Bankruptcy Example 

-31.28 

31.87 
-26.69 

26.10 

αiyi for support vectors are 
non-zero, all others are zero. 
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Key Points 

• Learning depends only on dot products of sample 
pairs.  Recognition depends only on dot products of 
unknown with samples. 
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Key Points 

• Learning depends only on dot products of sample 
pairs.  Recognition depends only on dot products of 
unknown with samples. 

• Exclusive reliance on dot products enables approach 
to non-linearly-separable problems.  

• The classifier depends only on the support vectors, 
not on all the training points.   

• Max margin lowers hypothesis variance. 
• The optimal classifier is defined uniquely – there 

are no “local maxima” in the search space 
• Polynomial in number of data points and 

dimensionality 
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Not Linearly Separable? 

• Require 
• C specified by user; controls tradeoff between size 

of margin and classification errors 
• C = 1 for separable case 

    

! 

0 " # i " C
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C Change 

C=10 C=1 
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C Change 

C=1 C=100 
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Example: Linearly Separable 

Image by Patrick Winston 
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Another example: Not linearly 
separable 

Image by Patrick Winston 



6.034 - Spring  • 33 

Isn’t a linear classifier very limiting? 
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Important: Linear separator in transformed feature space 
maps into non-linear separator in original feature space 
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Not separable?   
Try a higher dimensional space! 

Not separable with 2D line Separable with 3D plane 

x2 
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What you need 
•  To get into the new feature space, you use 
•  The transformation can be to a higher-dimensional 

feature space and may be non-linear in the feature 
values. 

)( ix!
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What you need 
•  To get into the new feature space, you use 
•  The transformation can be to a higher-dimensional 

feature space and may be non-linear in the feature 
values. 

•  Recall that SVM’s only use dot products of the 
data, so 

•  To optimize classifier, you need 
•  To run classifier, you need 
•  So, all you need is a way to compute dot products 

in transformed space as a function of vectors in 
original space! 
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The “Kernel Trick” 

• If dot products can be efficiently computed by 
  
• Then, all you need is a function on low-dim inputs 

• You don’t need ever to construct high-dimensional 
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Standard Choices For Kernels 

• No change (linear kernel) 
 

 
 

kikiki K xxxxxx !=="!" ),()()(
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Standard Choices For Kernels 

• No change (linear kernel) 
 

• Polynomial kernel (nth order) 
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Polynomial Kernel Example  
(one feature) 

Not 
separable 
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Polynomial Kernel Example  
(one feature) 
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Polynomial Kernel 

• Polynomial kernel for n=2 and features x=[x1 x2] 

  is equivalent to the following feature mapping: 
 
 
• We can verify that: 

2)1(),( zxzx !+=K

]1 2 2 2  [)( 2121
2
2

2
1 xxxxxx=! x

      

! 

"(x) # "(z) = x1
2z1

2 + x2
2z2

2 + 2x1x2z1z2 + 2x1z1 + 2x2z2 +1
= (1 + x1z1 + x2z2)

2

= (1 + x # z)2

= K(x,z)



6.034 - Spring  • 43 

Polynomial Kernel 

Images by Patrick Winston 
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Standard Choices For Kernels 

• No change (linear kernel) 
 

• Polynomial kernel (nth order) 

• Radial basis kernel (σ is standard deviation) 
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Radial-basis kernel 

• Classifier based on sum of Gaussian bumps with 
standard deviation σ, centered on support vectors. 
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Radial-basis kernel 
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6.034 - Spring  • 48 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Radial-basis kernel 

0.1 0.2 0.3 0.4 0.5 0.6 

x

support vectors 

      

! 

" h (u) = #iy
iK(xi

i =1

4

$ ,u) + b
2

2

2
),(

!

ux

ux
""

=

i

eK i

525.0=b 1.0=!

! 

y1"1 =1.76 y2"2 = #1.76
y3"3 =1.76 y4"4 = #1.76



6.034 - Spring  • 49 

Radial-basis kernel  
(large σ) 

Images by Patrick Winston 
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Another radial-basis example  
(small σ) 

Image by Patrick Winston 
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Cross-Validation Error 

• Does mapping to a very high-dimensional space 
lead to over-fitting? 

• Generally, no, thanks to the fact that only the 
support vectors determine the decision surface. 
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Cross-Validation Error 

• Does mapping to a very high-dimensional space 
lead to over-fitting? 

• Generally, no, thanks to the fact that only the 
support vectors determine the decision surface. 

• The expected leave-one-out cross-validation error 
depends on number of support vectors, not 
dimensionality of feature space. 

• If most data points are support vectors, a sign of 
possible overfitting, independent of the 
dimensionality of feature space. 

samples training #
vectors support # Expected error  CV Expected !
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Summary 

• A single global maximum 
• Quadratic programming or gradient descent 
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Summary 

• A single global maximum 
• Quadratic programming or gradient descent 

• Fewer parameters 
• C and kernel parameters (n for polynomial, σ for 

radial basis kernel) 
• Kernel 

• Quadratic minimization depends only on dot 
products of sample vectors 

• Recognition depends only on dot products of 
unknown vector with sample vectors  

• Reliance on only dot products enables efficient 
feature mapping to higher-dimensional spaces 
where linear separation is more effective. 
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Real Data 

• Wisconsin Breast Cancer Data 
• 9 features 
• C=1 
• 37 support vectors are used from 512 training 

data points 
• 12 prediction errors on training set (98% 

accuracy) 
• 96% accuracy on 171 held out points 
• Essentially same performance as nearest 

neighbors and decision trees 
• Don’t expect such good performance on every data 

set. 
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Success Stories 

 
• Gene microarray data  

• outperformed all other classifiers 
• specially designed kernel 

• Text categorization 
• linear kernel in >10,000 D input space 
• best prediction performance 
• 35 times faster to train than next best classifier 

(decision trees) 

• Many others: http://www.clopinet.com/isabelle/Projects/SVM/
applist.html 


