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Margin of a point

y' =y'(w-Xx"+Db)

e proportional to perpendicular
distance of point x' to hyperplane

6.034 - Spring « 4



Margin of a point

y' =y'(w-Xx"+Db)

e proportional to perpendicular
distance of point x' to hyperplane

e geometric margin is y’/

W
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Margin
y' =y'(w-x' +b)

e Scaling w changes value of margin but not actual
distances to separator (geometric margin)

e Pick the margin to closest positive and negative
points to be 1

+1(w-x'+b)=1
~1(w-x*+b)=1
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Margin

e Pick the margin to closest positive and negative
points to be 1

+1(w-x'+b)=1
~1(w-x*+b)=1
e Combining these

w-(x!'-x?)=2

e Dividing by length of w gives perpendicular
distance between lines (2 x geometric margin)
2

. (xl _ x2) -
Wi
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Picking w to Maximize Margin

e Pick w to maximize geometric margin
2

[wi

e or, equivalently, minimize

wi-wew
e or, equivalently, minimize
1 1 1
EHWHZ =W W= 52%2-
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Picking w to Maximize Margin

e Pick w to maximize geometric margin
2

w]
e or, equivalently, minimize

1 1
WHZ =§W'W=§ZWJ2-

1

a1

e while classifying points correctly
y'(w-x"+b)=1

e Or, equivalently,

y'(w-x"+b)-1=0
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Constrained Optimization

mvjn%HWHZ subject to y'(w-x'+b)-1=20, V,
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Constrained optimization Minz

' X = -1
No Constraint .y
\\\\ ) / / 35 _\\ | / J . _\\\\
A \ / fj 3l \ / / | \ \
! / 25t \\ —> ,'/ \ LS
\\ // \,\ | / \\ /
\ / : \'\ / \ /
\ / \ / \ )
N / y . /
\\ /// // \\ ) /
\\\ | ,// L | /05/ ; . \ \ J//
* = %
x*=0 x*=0 S+ =1

How do we solve with constraints?
- Lagrange Multipliers!!!



Lagrange multipliers — Dual variables

7 min.; 332 Add Lagrange multiplier

I\ /- Rewrite

i \ _f/,./ : S.T. L Z b Constraint

\\ / Introduce Lagrangian (objective):

T \/ ] L(z,a) = 2 — a(x — b)
Why does this work at all??7? We will solve:
* min is fighting max! Ming maXq L(z,a)
¢ x<b 2> (x-b)<0 = max_a(x-b)=« S.t. a >0

* min won't let that happen!! S Add new

« x>b, a>0-> (x-b)>0 = max_-a(x-b) =0, a*=0 constraint

« min is cool with 0, and L(x, a)=x? (original objective)
x=b = a can be anything, and L(x, a)=x? (original objective)
Since min is on the outside, can force max to behave and
constraints will be satisfied!!!



Constrained Optimization

mvjn%HWHZ subject to y'(w-x'+b)-1=20, V,

Convert to unconstrained optimization by incorporating
the constraints as an additional term

mwin(;w2 - Za,B/’(w X'+ b) - 1) a =0,Y,
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Constrained Optimization

mvjn%HWHZ subject to y'(w-x'+b)-1=20, V,

Convert to unconstrained optimization by incorporating
the constraints as an additional term

mwin(;w2 - Za,B/’(w X'+ b) - 1) a =0,Y,

To minimize expression:
minimize first (original) term, and
maximize second (constraint) term
since o; > 0, encourages constraints to be satisfied
but we want least “distortion” of original term...

6.034 - Spring » 12



Constrained Optimization

mvjn%HWHZ subject to y'(w-x'+b)-1=20, V,

Convert to unconstrained optimization by incorporating
the constraints as an additional term

min 3w - EMQ «“=0Y

Lagrange multipliers

To minimize expression:
minimize first (original) term, and
maximize second (constraint) term
since o; > 0, encourages constraints to be satisfied
but we want least “distortion” of original term...

Method of Lagrange multipliers
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Maximizing the Margin

L(W, b) = %HWHZ -Saly/(w x +b)-1]
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Maximizing the Margin

L(W, b) = %HWHZ -Saly/(w x +b)-1]

Minimized when:

w = E ay'x’
I

Ea,yi =0
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Maximizing the Margin

L(W, b) = %HWHZ -Saly/(w x +b)-1]

Minimized when:

= E aiyixi
/

Ea,yi =0

Substituting w* into L yields dual Lagrangian:

L(a) = ia, -

I\)II—L

k=1

m m
E E oY Y (XX

\

\

Only dot
products of the
feature vectors

appear
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Dual Lagrangian

maxL(a) subjectto Y ay’' =0 and a; = 0,Vi
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Dual Lagrangian

maxL(a) subjectto Y ay’' =0 and a; = 0,Vi

In general, since o, >= 0, either
a; = 0: constraint is satisfied with
no distortion at optimum w
or
a; > 0: constraint is satisfied with
equality (in this case x' is known as a
support vector)
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Dual Lagrangian
maxL(a) subjectto Y ay’' =0 and a; = 0,Vi
In general, since o, >= 0, either * 0

o; = 0: constraint is satisfied with no
distortion at optimum w *

or ‘e
o; > 0: constraint is satisfied with equalit%
(x' is known as a support vector) ) ¢
o =

W' = EO‘iyixi b=1/y -w'x
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Dual Lagrangian
maxL(a) subjectto Y ay’' =0 and a; = 0,Vi
In general, since o, >= 0, either * 0

o; = 0: constraint is satisfied with no
distortion at optimum w *

or ‘e
o; > 0: constraint is satisfied with equalit%
(x' is known as a support vector) ) ¢
o =

W' = EO‘iyixi b=1/y -w'x

e Has a unique maximum vector a=0 ¢

e Can be found using quadratic programming
or gradient ascent
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SVM Classifier

e Given unknown vector u, predict class (1 or -1) as
follows:

k
h(u) = sign(2 ay'x -u+ b)

| =

e The sum is over k support vectors
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Bankruptcy Example

~“Scheme Graphics

a.y' for support vectors are
non-zero, all others are zero.
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Key Points

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.
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Key Points

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

e Exclusive reliance on dot products enables approach
to non-linearly-separable problems.
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Key Points

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
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e Exclusive reliance on dot products enables approach
to non-linearly-separable problems.

e The classifier depends only on the support vectors,
not on all the training points.
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Key Points

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

e Exclusive reliance on dot products enables approach
to non-linearly-separable problems.

e The classifier depends only on the support vectors,
not on all the training points.

e Max margin lowers hypothesis variance.
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Key Points

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

e Exclusive reliance on dot products enables approach
to non-linearly-separable problems.

e The classifier depends only on the support vectors,
not on all the training points.

e Max margin lowers hypothesis variance.

e The optimal classifier is defined uniquely - there
are no “local maxima” in the search space

e Polynomial in number of data points and
dimensionality
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Not Linearly Separable?

e Require 0=, <C

e C specified by user; controls tradeoff between size
of margin and classification errors

e C = 1 for separable case
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C Change

W

r. Scheme Graphics u [
u @) )
- @) oe
- @) )
! ! ! ! |

I Scheme Graphics BE <)
! ® °
- O
- o @
~ c=10 |

6.034 - Spring

e 29



C Change

~'Scheme Graphics =10 x|
- ® o
- @ e o
- O o
. . /.,/ \‘.\ . .
C=100 C=1
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Example: Linearly Separable

Image by Patrick Winston
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Another example: Not linearly
separable

Image by Patrick Winston
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Isn’t a linear classifier very limiting?

not linearly linearly separable using
separable squared value of features.

Important: Linear separator in transformed feature space
maps into non-linear separator in original feature space
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Not separable?
Try a higher dimensional space!

P -— —

Not separable with 2D line Separable with 3D plane
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What you need

e To get into the new feature space, you use &(x’)
e The transformation can be to a higher-dimensional

feature space and may be non-linear in the feature
values.
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What you need

To get into the new feature space, you use o(x')
The transformation can be to a higher-dimensional
feature space and may be non-linear in the feature
values.

Recall that SVM’ s only use dot products of the
data, so

To optimize classifier, you need @(x’)- ®(x*)

To run classifier, you need @(x')- ®(u)

So, all you need is a way to compute dot products
in transformed space as a function of vectors in
original space!
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The “Kernel Trick”

o If dot products can be efficiently computed by
O(x') - (x*) = K(x', x*)

e Then, all you need is a function on low-dim inputs
K(x', x)

e You don’ t need ever to construct high-dimensional
d(x')
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Standard Choices For Kernels
e No change (linear kernel)

O(x') - d(xF) = K(x', x*) = x" - x*
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Standard Choices For Kernels
e No change (linear kernel)
O(x') - d(xF) = K(x', x*) = x" - x*

e Polynomial kernel (nt" order)

K(x', x) =1 +x" - x*)"
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Polynomial Kernel Example
(one feature)
Not

1 " : : 4 B x separable
0.6

0.1 0.2 0.3 0.4 0.5
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Polynomial Kernel Example

(one feature)

Not
I + : : + B x separable
0.1 0.2 0.3 0.4 0.5 0.6
D(x) = (x?,2x, 1)
" Separable
0.35 /
03 D(x) - D(2)
/ = X%z +2xz +1
o / = (1 + xz)?
o~ + Neg
* 02 / = Pos
0.15 .
0.1 /
0.05 . /
0 ¢ /

0.4
sqrt(2) x

0.6

0.8
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Polynomial Kernel

e Polynomial kernel for n=2 and features x=[Xx; X,]

K(x,z)=(1+Xx-2)*

Is equivalent to the following feature mapping:

D(X) = [x2 x2 2x,%, V2x, \2x, 1]

e We can verify that:
D(X) - D(Z) = X7Z7 + X525 + 2X,X,2,Z, + 2X,Z, +2X,Z, + 1
= (1+X,2, + X,Z,)°
= (1+x-2)°
= K(X,2)
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Polynomial Kernel

\! :e:i:-: .-.-}-.;f..
. -l|léi

Images by Patrick Winston
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Standard Choices For Kernels
e No change (linear kernel)
O(x') - d(xF) = K(x', x*) = x" - x*
e Polynomial kernel (nt" order)

K(x', x) =1 +x" - x*)"

e Radial basis kernel (o is standard deviation)

. | |
o |’ x| _(x %% )-(x7 -x*)
KX, x*)=¢e = e
(', %) 207 207
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Radial-basis kernel

e Classifier based on sum of Gaussian bumps with
standard deviation o, centered on support vectors.

o),

h(u) = sign|h'(u) |

k
h(u) =Y o,y K(X',u)+ b
i=1
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Radial-basis kernel

O

=0.1

B x
0.6
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Radial-basis kernel
ya, =176 y,a,=-1.76

b =0.525 o=0.1

v,o, =176 y,a, =-1.76

I T

0.1 0.2 0.3 0.4 0.5 0.6

support vectors 6.034 - Spring « 47




Radial-basis kernel
ya, =176 y,a,=-1.76

v, =176 y,a, =176 b =0.525 o=0.1 2
4 . . —x’—u”
h'(“kEGIY'K(X',UHb K(x',u) = e——
So\Ui=1 | | | | | | | o

2

1.5

1 _5 | | | | | | |
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
i N ¥ H B B x
0.1 0.2 0.3 0.4 0.5 0.6
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Radial-basis kernel
(large o)

AN

Images by Patrick Winston
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Another radial-basis example
(small o)

Image by Patrick Winston
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Cross-Validation Error

e Does mapping to a very high-dimensional space
lead to over-fitting?

e Generally, no, thanks to the fact that only the
support vectors determine the decision surface.
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Cross-Validation Error

e Does mapping to a very high-dimensional space
lead to over-fitting?

e Generally, no, thanks to the fact that only the
support vectors determine the decision surface.

e The expected leave-one-out cross-validation error
depends on number of support vectors, not
dimensionality of feature space.

Expected # support vectors

Expected CV error < —
# training samples

e If most data points are support vectors, a sign of
possible overfitting, independent of the
dimensionality of feature space.
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Summary

e A single global maximum
e Quadratic programming or gradient descent

6.034 - Spring 53



Summary

e A single global maximum
e Quadratic programming or gradient descent
e Fewer parameters

e C and kernel parameters (n for polynomial, o for
radial basis kernel)
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Summary

e A single global maximum
e Quadratic programming or gradient descent
e Fewer parameters

e C and kernel parameters (n for polynomial, o for
radial basis kernel)

e Kernel

e Quadratic minimization depends only on dot
products of sample vectors

e Recognition depends only on dot products of
unknown vector with sample vectors

e Reliance on only dot products enables efficient
feature mapping to higher-dimensional spaces
where linear separation is more effective.
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Real Data

e Wisconsin Breast Cancer Data
e 9 features
o C=1
e 37 support vectors are used from 512 training
data points

e 12 prediction errors on training set (98%
accuracy)

® 96% accuracy on 171 held out points

e Essentially same performance as nearest
neighbors and decision trees

e Don’ t expect such good performance on every data
set.
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Success Stories

e Gene microarray data
e outperformed all other classifiers
e specially designed kernel

e Text categorization
e [inear kernel in >10,000 D input space
e best prediction performance

¢ 35 times faster to train than next best classifier
(decision trees)

e Many others: http://www.clopinet.com/isabelle/Projects/SVM/
applist.html
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