
6.034 - Spring • 1

Which Separator?

6.034 - Spring • 2

Which Separator?

Maximize the margin to closest points

6.034 - Spring • 3

Which Separator?

Maximize the margin to closest points

6.034 - Spring • 4

Margin of a point

x1

x2

w

ix

!

" i # y i(w $ x i + b)
•  proportional to perpendicular
distance of point xi to hyperplane

kx

i!

k!

6.034 - Spring • 5

Margin of a point

x1

x2

w

ix

!

" i # y i(w $ x i + b)
•  proportional to perpendicular
distance of point xi to hyperplane

•  geometric margin is

kx

i!

k!

!

" i w

6.034 - Spring • 6

Margin

• Scaling w changes value of margin but not actual
distances to separator (geometric margin)

• Pick the margin to closest positive and negative
points to be 1

)(by iii +!" xw#

1)(1
1)(1

2

1

=+!"

=+!+

b
b

xw
xw

x1

x2

6.034 - Spring • 7

Margin

• Pick the margin to closest positive and negative
points to be 1

• Combining these

• Dividing by length of w gives perpendicular

distance between lines (2 x geometric margin)

1)(1
1)(1

2

1

=+!"

=+!+

b
b

xw
xw

2)(21 =!" xxw

w
xx

w
w 2)(21 =!"

6.034 - Spring • 8

Picking w to Maximize Margin

• Pick w to maximize geometric margin

• or, equivalently, minimize

• or, equivalently, minimize

w
2

!="=
j

jw
22

2
1

2
1

2
1 www

!

w = w " w

6.034 - Spring • 9

Picking w to Maximize Margin

• Pick w to maximize geometric margin

• or, equivalently, minimize

• while classifying points correctly

• or, equivalently,

1)(!+" by ii xw

w
2

!="=
j

jw
22

2
1

2
1

2
1 www

01)(!"+# by ii xw

1
1

6.034 - Spring • 10

Constrained Optimization

i
ii by !"#+$,01)(to subject

2
1min 2 xww

w

Constrained	
 op5miza5on	

x*=0

No Constraint x ≥ -1

x*=0 x*=1

x ≥ 1

How do we solve with constraints?
 à Lagrange Multipliers!!!

Lagrange	
 mul5pliers	
 –	
 Dual	
 variables	

Introduce Lagrangian (objective):

We will solve:

Add Lagrange multiplier

Add new
constraint

Why does this work at all???
•  min is fighting max!
•  x<b à (x-b)<0 à maxα-α(x-b) = ∞

•  min won’t let that happen!!
•  x>b, α>0à (x-b)>0 à maxα-α(x-b) = 0, α*=0

•  min is cool with 0, and L(x, α)=x2 (original objective)

•  x=b à α can be anything, and L(x, α)=x2 (original objective)
•  Since min is on the outside, can force max to behave and

constraints will be satisfied!!!

Rewrite
Constraint

6.034 - Spring • 11

Constrained Optimization

i
ii by !"#+$,01)(to subject

2
1min 2 xww

w

Convert to unconstrained optimization by incorporating
the constraints as an additional term

[] ii
i

ii
i by !"#

$

%
&
'

(
)+*) + ,0 1)(

2
1min 2

,, xww
w

6.034 - Spring • 12

Constrained Optimization

i
ii by !"#+$,01)(to subject

2
1min 2 xww

w

Convert to unconstrained optimization by incorporating
the constraints as an additional term

[] ii
i

ii
i by !"#

$

%
&
'

(
)+*) + ,0 1)(

2
1min 2

,, xww
w

To minimize expression:
 minimize first (original) term, and
 maximize second (constraint) term
 since αi > 0, encourages constraints to be satisfied
 but we want least “distortion” of original term…

6.034 - Spring • 13

Constrained Optimization

i
ii by !"#+$,01)(to subject

2
1min 2 xww

w

Convert to unconstrained optimization by incorporating
the constraints as an additional term

[] ii
i

ii
i by !"#

$

%
&
'

(
)+*) + ,0 1)(

2
1min 2

,, xww
w

To minimize expression:
 minimize first (original) term, and
 maximize second (constraint) term
 since αi > 0, encourages constraints to be satisfied
 but we want least “distortion” of original term…

Method of Lagrange multipliers

Lagrange multipliers

6.034 - Spring • 14

Maximizing the Margin

[] 1)(
2
1),(2

! "+#"=
i

ii
i bybL xwww $

6.034 - Spring • 15

Maximizing the Margin

[] 1)(
2
1),(2

! "+#"=
i

ii
i bybL xwww $

!=
i

ii
iy xw "* ! =

i

i
iy 0"Minimized when:

6.034 - Spring • 16

Maximizing the Margin

[] 1)(
2
1),(2

! "+#"=
i

ii
i bybL xwww $

!=
i

ii
iy xw "* ! =

i

i
iy 0"Minimized when:

!

L(") = " i
i=1

m

$
1
2

" i"kyiykx ixk
k=1

m

#
i=1

m

Only dot
products of the
feature vectors

appear

Substituting w* into L yields dual Lagrangian:

6.034 - Spring • 17

Dual Lagrangian

!

max
"

L(") subject to "iy
i

i

= 0 and " i $ 0,%i

6.034 - Spring • 18

Dual Lagrangian

In general, since αi >= 0, either

 αi = 0: constraint is satisfied with
no distortion at optimum w
or
 αi > 0: constraint is satisfied with
equality (in this case xi is known as a
support vector)

!

max
"

L(") subject to "iy
i

i

= 0 and " i $ 0,%i

!

" = 0

!

" = 0

!

" = 0

!

" = 0

6.034 - Spring • 19

Dual Lagrangian

In general, since αi >= 0, either

 αi = 0: constraint is satisfied with no
distortion at optimum w
or
 αi > 0: constraint is satisfied with equality
(xi is known as a support vector)

!

max
"

L(") subject to "iy
i

i

= 0 and " i $ 0,%i

!

" = 0

!

" = 0

!

" = 0

!

" = 0

!=
i

ii
iy xw "*

!

b = 1 y i " w*x i

6.034 - Spring • 20

Dual Lagrangian

In general, since αi >= 0, either

 αi = 0: constraint is satisfied with no
distortion at optimum w
or
 αi > 0: constraint is satisfied with equality
(xi is known as a support vector)

•  Has a unique maximum vector
•  Can be found using quadratic programming

or gradient ascent

!

max
"

L(") subject to "iy
i

i

= 0 and " i $ 0,%i

!

" = 0

!

" = 0

!

" = 0

!

" = 0

!=
i

ii
iy xw "*

!

b = 1 y i " w*x i

6.034 - Spring • 21

SVM Classifier

• Given unknown vector u, predict class (1 or -1) as
follows:

• The sum is over k support vectors

!!
"

#
$$
%

&
+'= (

=

bysignh
k

i

ii
i uxu

1
)()

6.034 - Spring • 22

Bankruptcy Example

-31.28

31.87
-26.69

26.10

αiyi for support vectors are
non-zero, all others are zero.

6.034 - Spring • 23

Key Points

• Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

6.034 - Spring • 24

Key Points

• Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

• Exclusive reliance on dot products enables approach
to non-linearly-separable problems.

6.034 - Spring • 25

Key Points

• Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

• Exclusive reliance on dot products enables approach
to non-linearly-separable problems.

• The classifier depends only on the support vectors,
not on all the training points.

6.034 - Spring • 26

Key Points

• Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

• Exclusive reliance on dot products enables approach
to non-linearly-separable problems.

• The classifier depends only on the support vectors,
not on all the training points.

• Max margin lowers hypothesis variance.

6.034 - Spring • 27

Key Points

• Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

• Exclusive reliance on dot products enables approach
to non-linearly-separable problems.

• The classifier depends only on the support vectors,
not on all the training points.

• Max margin lowers hypothesis variance.
• The optimal classifier is defined uniquely – there

are no “local maxima” in the search space
• Polynomial in number of data points and

dimensionality

6.034 - Spring • 28

Not Linearly Separable?

• Require
• C specified by user; controls tradeoff between size

of margin and classification errors
• C = 1 for separable case

!

0 " # i " C

6.034 - Spring • 29

C Change

C=10 C=1

6.034 - Spring • 30

C Change

C=1 C=100

6.034 - Spring • 31

Example: Linearly Separable

Image by Patrick Winston

6.034 - Spring • 32

Another example: Not linearly
separable

Image by Patrick Winston

6.034 - Spring • 33

Isn’t a linear classifier very limiting?

+

+
+ +

++

R2

R2 x1
2

x2
2

linearly separable using
squared value of features.

-
-
- -

- -

- +
+

+
+

+ +

+
+

+

+
+ + R

-
-

-

-

-

-

-
-

-
-

-

-

not linearly
separable

-

x1

x2

Important: Linear separator in transformed feature space
maps into non-linear separator in original feature space

6.034 - Spring • 34

Not separable?
Try a higher dimensional space!

Not separable with 2D line Separable with 3D plane

x2

6.034 - Spring • 35

What you need
•  To get into the new feature space, you use
•  The transformation can be to a higher-dimensional

feature space and may be non-linear in the feature
values.

)(ix!

6.034 - Spring • 36

What you need
•  To get into the new feature space, you use
•  The transformation can be to a higher-dimensional

feature space and may be non-linear in the feature
values.

•  Recall that SVM’s only use dot products of the
data, so

•  To optimize classifier, you need
•  To run classifier, you need
•  So, all you need is a way to compute dot products

in transformed space as a function of vectors in
original space!

)(ix!

)()(ki xx !"!

)()(ux !"! i

6.034 - Spring • 37

The “Kernel Trick”

• If dot products can be efficiently computed by

• Then, all you need is a function on low-dim inputs

• You don’t need ever to construct high-dimensional

),()()(kiki K xxxx =!"!

),(kiK xx

)(ix!

6.034 - Spring • 38

Standard Choices For Kernels

• No change (linear kernel)

kikiki K xxxxxx !=="!"),()()(

6.034 - Spring • 39

Standard Choices For Kernels

• No change (linear kernel)

• Polynomial kernel (nth order)

kikiki K xxxxxx !=="!"),()()(

nkikiK)1(),(xxxx !+=

6.034 - Spring • 40

Polynomial Kernel Example
(one feature)

Not
separable

0.1 0.2 0.3 0.4 0.5 0.6

x

6.034 - Spring • 41

Polynomial Kernel Example
(one feature)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

sqrt(2) x

x^
2 Neg

Pos

)1 ,2,()(2 xxx =!

Not
separable

Separable

2

22

)1(
12

)()(

xz
xzzx

zx

+=

++=

!"!

0.1 0.2 0.3 0.4 0.5 0.6

x

6.034 - Spring • 42

Polynomial Kernel

• Polynomial kernel for n=2 and features x=[x1 x2]

 is equivalent to the following feature mapping:

• We can verify that:

2)1(),(zxzx !+=K

]1 2 2 2 [)(2121
2
2

2
1 xxxxxx=! x

!

"(x) # "(z) = x1
2z1

2 + x2
2z2

2 + 2x1x2z1z2 + 2x1z1 + 2x2z2 +1
= (1 + x1z1 + x2z2)

2

= (1 + x # z)2

= K(x,z)

6.034 - Spring • 43

Polynomial Kernel

Images by Patrick Winston

6.034 - Spring • 44

Standard Choices For Kernels

• No change (linear kernel)

• Polynomial kernel (nth order)

• Radial basis kernel (σ is standard deviation)

kikiki K xxxxxx !=="!"),()()(

nkikiK)1(),(xxxx !+=

2

)()(

2

2

22
),(

!!

kikiki

eeK ki
xxxxxx

xx
"#""""

==

6.034 - Spring • 45

Radial-basis kernel

• Classifier based on sum of Gaussian bumps with
standard deviation σ, centered on support vectors.

u
x2

x1

!

" h (u) = #iy
iK(xi

i =1

k

$,u) + b

2

2

2
),(

!

ux

ux
""

=

i

eK i

[])()(uu hsignh !=

6.034 - Spring • 46

Radial-basis kernel

0.1 0.2 0.3 0.4 0.5 0.6

x

1.0=!

6.034 - Spring • 47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Radial-basis kernel

0.1 0.2 0.3 0.4 0.5 0.6

x

support vectors

!

y1"1 =1.76 y2"2 = #1.76
y3"3 =1.76 y4"4 = #1.76 525.0=b 1.0=!

6.034 - Spring • 48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Radial-basis kernel

0.1 0.2 0.3 0.4 0.5 0.6

x

support vectors

!

" h (u) = #iy
iK(xi

i =1

4

$,u) + b
2

2

2
),(

!

ux

ux
""

=

i

eK i

525.0=b 1.0=!

!

y1"1 =1.76 y2"2 = #1.76
y3"3 =1.76 y4"4 = #1.76

6.034 - Spring • 49

Radial-basis kernel
(large σ)

Images by Patrick Winston

6.034 - Spring • 50

Another radial-basis example
(small σ)

Image by Patrick Winston

6.034 - Spring • 51

Cross-Validation Error

• Does mapping to a very high-dimensional space
lead to over-fitting?

• Generally, no, thanks to the fact that only the
support vectors determine the decision surface.

6.034 - Spring • 52

Cross-Validation Error

• Does mapping to a very high-dimensional space
lead to over-fitting?

• Generally, no, thanks to the fact that only the
support vectors determine the decision surface.

• The expected leave-one-out cross-validation error
depends on number of support vectors, not
dimensionality of feature space.

• If most data points are support vectors, a sign of
possible overfitting, independent of the
dimensionality of feature space.

samples training #
vectors support # Expected error CV Expected !

6.034 - Spring • 53

Summary

• A single global maximum
• Quadratic programming or gradient descent

6.034 - Spring • 54

Summary

• A single global maximum
• Quadratic programming or gradient descent

• Fewer parameters
• C and kernel parameters (n for polynomial, σ for

radial basis kernel)

6.034 - Spring • 55

Summary

• A single global maximum
• Quadratic programming or gradient descent

• Fewer parameters
• C and kernel parameters (n for polynomial, σ for

radial basis kernel)
• Kernel

• Quadratic minimization depends only on dot
products of sample vectors

• Recognition depends only on dot products of
unknown vector with sample vectors

• Reliance on only dot products enables efficient
feature mapping to higher-dimensional spaces
where linear separation is more effective.

6.034 - Spring • 56

Real Data

• Wisconsin Breast Cancer Data
• 9 features
• C=1
• 37 support vectors are used from 512 training

data points
• 12 prediction errors on training set (98%

accuracy)
• 96% accuracy on 171 held out points
• Essentially same performance as nearest

neighbors and decision trees
• Don’t expect such good performance on every data

set.

6.034 - Spring • 57

Success Stories

• Gene microarray data

• outperformed all other classifiers
• specially designed kernel

• Text categorization
• linear kernel in >10,000 D input space
• best prediction performance
• 35 times faster to train than next best classifier

(decision trees)

• Many others: http://www.clopinet.com/isabelle/Projects/SVM/
applist.html

