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Artificial Neural Networks 
(Feedforward Nets) 
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Single Perceptron Unit 
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Linear Classifier 
Single Perceptron Unit 

x1 

x2 

w

xy 

x0=1 x1 x3 x2 xn 

w1 
w0 

.  .  . 

w2 w3 

wn 

)()()( xwxwx !"+!= ## bh

!
"
# $

=
 0
01

)(
else
z

z%



6.034 - Spring  • 4 

Beyond Linear Separability 
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Multi-Layer Perceptron 

•  More powerful than single layer.   

•  Lower layers transform the input problem into more 
tractable (linearly separable) problems for subsequent 
layers.   
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Multi-Layer Perceptron Learning 

• Any set of training points can be separated by a 
three-layer perceptron network. 
•  “Almost any” set of points separable by two-layer 

perceptron network. 
• But, no efficient learning rule is known. 
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Multi-Layer Perceptron Learning 

• Any set of training points can be separated by a 
three-layer perceptron network. 
•  “Almost any” set of points separable by two-layer 

perceptron network. 
• But, no efficient learning rule is known. 
 

Two “hidden” layers and  
one output layer 

One “hidden” layer and  
one output layer 

May need an  
exponential  

number of units. 
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Multi-Layer Perceptron Learning 
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perceptron network. 
• But, no efficient learning rule is known. 

• Could we use gradient ascent/descent? 
• We would need smoothness: small change in 

weights produces small change in output. 
• Threshold function is not smooth. 
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Multi-Layer Perceptron Learning 

• Any set of training points can be separated by a 
three-layer perceptron network. 
•  “Almost any” set of points separable by two-layer 

perceptron network. 
• But, no efficient learning rule is known. 

• Could we use gradient ascent/descent? 
• We would need smoothness: small change in 

weights produces small change in output. 
• Threshold function is not smooth. 

• Use a smooth threshold function! 
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Sigmoid Unit 
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Training 
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Training 

w is a vector of weights 

x is a vector of inputs 
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Gradient Descent 
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Training Neural Nets 
without overfitting, hopefully… 

Given: Data set, desired outputs and a neural net with m weights.  
Find a setting for the weights that will give good predictive 
performance on new data.  Estimate expected performance on new 
data. 
1.  Split data set (randomly) into three subsets: 

•  Training set – used for picking weights 
•  Validation set – used to stop training 
•  Test set – used to evaluate performance 

2.  Pick random, small weights as initial values 
3.  Perform iterative minimization of error over training set. 
4.  Stop when error on validation set reaches a minimum (to avoid 

overfitting). 
5.  Repeat training (from step 2) several times (avoid local 

minima) 
6.  Use best weights to compute error on test set, which is 

estimate of performance on new data.  Do not repeat training 
to improve this. 

Can use cross-validation if data set is too small to divide into three 
subsets. 
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Training vs. Test Error 
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Training vs. Test Error 
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Overfitting is 
not unique to 
neural nets… 

1-Nearest Neighbors Decision Trees 
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Overfitting in SVM 

Radial Kernel !=0.1 Radial Kernel !=1 
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On-line vs off-line 

There are two approaches to performing the error 
minimization: 

•  On-line training – present xi and yi* (chosen randomly 
from the training set).  Change the weights to reduce the 
error on this instance.  Repeat. 

•  Off-line training – change weights to reduce the total error 
on training set (sum over all instances). 

On-line training is an approximation to gradient descent since 
the gradient based on one instance is “noisy” relative to the 
full gradient (based on all instances).  This can be beneficial in 
pushing the system out of shallow local minima. 
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Feature Selection 

• In many machine learning applications, there are 
huge numbers of features 

• text classification (# words) 
• gene arrays (5,000 – 50,000) 
• images (512 x 512 pixels) 
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Feature Selection 

• In many machine learning applications, there are 
huge numbers of features 

• text classification (# words) 
• gene arrays (5,000 – 50,000) 
• images (512 x 512 pixels) 

• Too many features 
• make algorithms run slowly 
• risk overfitting 

• Find a smaller feature space 
• subset of existing features 
• new features constructed from old ones 
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Feature Ranking 
•  For each feature, compute a measure of its relevance 

to the output 
•  Choose the k features with the highest rankings 
•  Correlation between feature j and output 

•  Correlation measures how much x tends to deviate 
from its mean on the same examples on which y 
deviates from its mean 

!!

!
""

""
=

i

i

i
j

i
j

i

i
j

i
j

yyxx

yyxx
jR

22 )()(

))((
)(

!=
i

i
jj x

n
x 1

!=
i

iy
n

y 1



6.034 - Spring 03  • 5 

Correlations in Heart Data 
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Correlations in MPG > 22 data 
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XOR Bites Back 

• As usual, functions with XOR in them will cause us 
trouble 

• Each feature will, individually, have a correlation 
of 0 (it occurs positively as much as negatively 
for positive outputs) 

 
• To solve XOR, we need to look at groups of 

features together 
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Subset Selection 

• Consider subsets of variables 
• too hard to consider all possible subsets 
• wrapper methods: use training set or cross-

validation error to measure the goodness of 
using different feature subsets with your 
classifier 

• greedily construct a good subset by adding or 
subtracting features one by one 
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Forward Selection 

Given a particular classifier you want to use 
F = {} 

For each fj 
Train classifier with inputs F + {fj} 

Add fj that results in lowest-error classifier 
to F 

Continue until F is the right size, or error has 
quit decreasing 
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Forward Selection 

Given a particular classifier you want to use 
F = {} 

For each fj 
Train classifier with inputs F + {fj} 

Add fj that results in lowest-error classifier 
to F 

Continue until F is the right size, or error has 
quit decreasing 

• Decision trees, by themselves, do something 
similar to this 
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Forward Selection 

Given a particular classifier you want to use 
F = {} 

For each fj 
Train classifier with inputs F + {fj} 

Add fj that results in lowest-error classifier 
to F 

Continue until F is the right size, or error has 
quit decreasing 

• Decision trees, by themselves, do something 
similar to this 

• Trouble with XOR 



6.034 - Spring 03  • 12 

Backward Elimination 

Given a particular classifier you want to use 
F = all features 

For each fj 
Train classifier with inputs F - {fj} 

Remove fj that results in lowest-error 
classifier from F 

Continue until F is the right size, or error 
increases too much 
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Forward Selection on Auto Data 
Forward Selection - Auto
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Backward Elimination on Auto Data 
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Forward Selection on Heart Data 
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0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Number of features

10
-w

ay
 X

-v
al

 A
cc

ur
ac

y

Series1

number of features added 

cross-
validation 
accuracy 



6.034 - Spring 03  • 16 

Backward Elimination on Heart Data 
Backward Elimination - Heart
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Recursive Feature Elimination 
Train a linear SVM or neural network  
Remove the feature with the smallest weight 
Repeat 
 

• More efficient than regular backward elimination 
• Requires only one training phase per feature 
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Clustering 

• Form clusters of inputs 
• Map the clusters into outputs 
• Given a new example, find its cluster, and generate 

the associated output 
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Clustering 

• Form clusters of inputs 
• Map the clusters into outputs 
• Given a new example, find its cluster, and generate 

the associated output 
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Clustering Criteria 

• small distances between points within a cluster 
• large distances between clusters 

• Need a distance measure, as in nearest neighbor 
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K-Means Clustering 

• Tries to minimize 

• Only gets, greedily, to a local optimum 
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K-means Algorithm 
Choose k 
Randomly choose k points Cj to be cluster centers 
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K-means Algorithm 
Choose k 
Randomly choose k points Cj to be cluster centers 
Loop 

Partition the data into k classes Sj according 
to which of the Cj they’re closest to 

For each Sj, compute the mean of its elements 
and let that be the new cluster center 
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K-means Algorithm 
Choose k 
Randomly choose k points Cj to be cluster centers 
Loop 

Partition the data into k classes Sj according 
to which of the Cj they’re closest to 

For each Sj, compute the mean of its elements 
and let that be the new cluster center 

Stop when centers quit moving 
 

• Guaranteed to terminate 
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K-means Algorithm 
Choose k 
Randomly choose k points Cj to be cluster centers 
Loop 

Partition the data into k classes Sj according 
to which of the Cj they’re closest to 

For each Sj, compute the mean of its elements 
and let that be the new cluster center 

Stop when centers quit moving 

 
• Guaranteed to terminate 
• If a cluster becomes empty, re-initialize the center 
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K-Means Example 
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K-Means Example 



6.034 - Spring 03  • 29 

K-Means Example 
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K-Means Example 
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K-Means Example 
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K-Means Example 
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K-Means Example 
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K-Means Example 
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K-Means Example 
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K-Means Example 
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Principal Components Analysis 

• Given an n-dimensional real-valued space, data are 
often nearly restricted to a lower-dimensional 
subspace 

• PCA helps us find such a subspace whose 
coordinates are linear functions of the originals 
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Principal Components Analysis 

• Given an n-dimensional real-valued space, data are 
often nearly restricted to a lower-dimensional 
subspace 

• PCA helps us find such a subspace whose 
coordinates are linear functions of the originals 

http://www.okstate.edu/artsci/ 
botany/ordinate/PCA.htm 
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Cartoon of algorithm 

• Normalize the data (subtract mean, divide by 
stdev) 
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Cartoon of algorithm 

• Normalize the data (subtract mean, divide by 
stdev) 

• Find the line along which the data has the most 
variability:  that’s the first principal component 
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Cartoon of algorithm 

• Normalize the data (subtract mean, divide by 
stdev) 

• Find the line along which the data has the most 
variability:  that’s the first principal component 

• Project the data into the n-1 dimensional space 
orthogonal to the line 

• Repeat 
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Cartoon of algorithm 

• Normalize the data (subtract mean, divide by 
stdev) 

• Find the line along which the data has the most 
variability:  that’s the first principal component 

• Project the data into the n-1 dimensional space 
orthogonal to the line 

• Repeat 

• Result is a new orthogonal set of axes 
• First k give a lower-D space that represents the 

variability of the data as well as possible 
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Cartoon of algorithm 

• Normalize the data (subtract mean, divide by 
stdev) 

• Find the line along which the data has the most 
variability:  that’s the first principal component 

• Project the data into the n-1 dimensional space 
orthogonal to the line 

• Repeat 

• Result is a new orthogonal set of axes 
• First k give a lower-D space that represents the 

variability of the data as well as possible 
• Really: find the eigenvectors of the covariance 

matrix with the k largest eigenvalues 
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Linear Transformations Only 

There are fancier methods that can find this structure 
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Insensitive to Classification Task 
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Insensitive to Classification Task 

There are fancier methods that can take class into account 
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Validating a Classifier 
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Validating a Classifier 

• sensitivity: P(predict 1 | actual 1) = D/(C+D) 
•  “true positive rate” (TP) 
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Validating a Classifier 

• sensitivity: P(predict 1 | actual 1) = D/(C+D) 
•  “true positive rate” (TP) 

• specificity: P(predict 0 | actual 0) = A/(A+B) 
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Validating a Classifier 

• sensitivity: P(predict 1 | actual 1) = D/(C+D) 
•  “true positive rate” (TP) 

• specificity: P(predict 0 | actual 0) = A/(A+B) 

• false-alarm rate: P(predict 1 | actual 0) = B/(A+B) 
•  “false positive rate” (FP) 
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Cost Sensitivity 

• Predict whether a patient has pseuditis based on 
blood tests 

• Disease is often fatal if left untreated 
• Treatment is cheap and side-effect free 
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Cost Sensitivity 

• Predict whether a patient has pseuditis based on 
blood tests 

• Disease is often fatal if left untreated 
• Treatment is cheap and side-effect free 

• Which classifier to use? 
• Classifier 1: TP = 0.9, FP = 0.4 
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Cost Sensitivity 

• Predict whether a patient has pseuditis based on 
blood tests 

• Disease is often fatal if left untreated 
• Treatment is cheap and side-effect free 

• Which classifier to use? 
• Classifier 1: TP = 0.9, FP = 0.4 
• Classifier 2: TP = 0.7, FP = 0.1 
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Build Costs into Classifier 

• Assess costs of both types of error 
• use a different splitting criterion for decision 

trees 
• make error function for neural nets asymmetric;  

different costs for each kind of error 
• use different values of C for SVMs depending on 

kind of error  
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Tunable Classifiers 

• Classifiers that have a threshold (naïve Bayes,  
neural nets, SVMs) can be adjusted, post learning, 
by changing the threshold, to make different trade-
offs between type 1 and type 2 errors 
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Tunable Classifiers 

• Classifiers that have a threshold (naïve Bayes,  
neural nets, SVMs) can be adjusted, post learning, 
by changing the threshold, to make different trade-
offs between type 1 and type 2 errors 

• C1,C2: costs of errors 
• P: percentage of positive examples 
• x: tunable threshold 
• TP(x): true positive rate at threshold x 
• FP(x): false positive rate at threshold x 

• Expected Cost = C2P(1-TP(x)) + C1(1-P)FP(x) 
• choose x to minimize expected cost 
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ROC Curves 

•  “receiver operating characteristics” 
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ROC Curves 

•  “receiver operating characteristics” 
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ROC Curves 

•  “receiver operating characteristics” 
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ROC Curves 

•  “receiver operating characteristics” 
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Many more issues! 

• Missing data 
• Many examples in one class, few in other (fraud 

detection) 
• Expensive data (active learning) 
• … 


