
6.034 - Spring • 1

Artificial Neural Networks
(Feedforward Nets)

y

w03

w23

w02 w22
w21

w12 w11

w01

-1

-1 -1
x1 x2

w13 y1 y2

6.034 - Spring • 2

Single Perceptron Unit

y

x0=1 x1 x3 x2 xn

w1
w0

. . .

w2 w3

wn

6.034 - Spring • 3

Linear Classifier
Single Perceptron Unit

x1

x2

w

xy

x0=1 x1 x3 x2 xn

w1
w0

. . .

w2 w3

wn

)()()(xwxwx !"+!= ## bh

!
"
$

=
 0
01

)(
else
z

z%

6.034 - Spring • 4

Beyond Linear Separability

1 0

0 1
Not linearly
separable

6.034 - Spring • 5

Beyond Linear Separability

1 0

0 1
Not linearly
separable

1 0

0 1

6.034 - Spring • 6

Beyond Linear Separability

1 0

0 1
Not linearly
separable 1 0

0 1

1 0

0 1

6.034 - Spring • 7

x1

x2

x3

xu

input hidden hidden output

y1

y2

x

y

Multi-Layer Perceptron

•  More powerful than single layer.

•  Lower layers transform the input problem into more
tractable (linearly separable) problems for subsequent
layers.

6.034 - Spring • 8

x1 w13
w11

w12

o2

o1

w21

y

w03 w22
-1

x2

w23

o1

o2
w02

-1

w01

-1

1 0

0 1

XOR Problem

x1

0
0
1
1

x2

0
1
0
1

o1

0
0
0
1

w01 = 3/2 w11 = w12 = 1

w02 = 1/2 w21 = w22 = 1

Not linearly
separable

6.034 - Spring • 9

x1 w13
w11

w12

o2

o1

w21

y

w03 w22
-1

x2

w23

o1

o2
w02

-1

w01

-1

1 0

0 1

XOR Problem

x1

0
0
1
1

x2

0
1
0
1

o1

0
0
0
1

o2

0
1
1
1

w01 = 3/2 w11 = w12 = 1

w02 = 1/2 w21 = w22 = 1

Not linearly
separable

6.034 - Spring • 10

x1 w13
w11

w12

o2

o1

w21

y

w03 w22
-1

x2

w23

o1

o2
w02

-1

w01

-1

1 0

0 1

XOR Problem

x1

0
0
1
1

x2

0
1
0
1

o1

0
0
0
1

o2

0
1
1
1

y

0
1
1
0

w01 = 3/2 w11 = w12 = 1

w02 = 1/2 w21 = w22 = 1

 w03 = 1/2 w31 = -1, w32 = 1

1 0

0
o1

o2

Not linearly
separable

Linearly
separable

6.034 - Spring • 11

Multi-Layer Perceptron Learning

• Any set of training points can be separated by a
three-layer perceptron network.
•  “Almost any” set of points separable by two-layer

perceptron network.
• But, no efficient learning rule is known.

6.034 - Spring • 12

Multi-Layer Perceptron Learning

• Any set of training points can be separated by a
three-layer perceptron network.
•  “Almost any” set of points separable by two-layer

perceptron network.
• But, no efficient learning rule is known.

Two “hidden” layers and
one output layer

One “hidden” layer and
one output layer

May need an
exponential

number of units.

6.034 - Spring • 13

Multi-Layer Perceptron Learning

• Any set of training points can be separated by a
three-layer perceptron network.
•  “Almost any” set of points separable by two-layer

perceptron network.
• But, no efficient learning rule is known.

• Could we use gradient ascent/descent?
• We would need smoothness: small change in

weights produces small change in output.
• Threshold function is not smooth.

6.034 - Spring • 14

Multi-Layer Perceptron Learning

• Any set of training points can be separated by a
three-layer perceptron network.
•  “Almost any” set of points separable by two-layer

perceptron network.
• But, no efficient learning rule is known.

• Could we use gradient ascent/descent?
• We would need smoothness: small change in

weights produces small change in output.
• Threshold function is not smooth.

• Use a smooth threshold function!

6.034 - Spring • 15

Sigmoid Unit

! "+
==

n

i
zii e

zsxwz
1

1)(

y

-1 xn x2

w1
wn w0 w2 . . .

x1

)(zs

6.034 - Spring • 16

Sigmoid Unit

y

-1 x2
x1

w1 w2 w0

x1 x2

y

y=1/2

6.034 - Spring • 17

Training

),(wxy
w is a vector of weights

x is a vector of inputs

))()((0302222112230122111113 wwxwxwswwxwxwswsy !!++!+=

z1 z2

z3

y

w03

w23

z3

z2

w02 w22
w21

w12 w11

w01

z1
-1

-1 -1
x1 x2

w13 y1 y2

6.034 - Spring • 18

Training

w is a vector of weights

x is a vector of inputs

))()((0302222112230122111113 wwxwxwswwxwxwswsy !!++!+=

z1 z2

z3

is desired output:
iy

Error over the training set for a given
weight vector:

! "=
i

ii yyE 2)),((
2
1 wx

Our goal is to find weight vector that minimizes error

y

w03

w23

z3

z2

w02 w22
w21

w12 w11

w01

z1
-1

-1 -1
x1 x2

w13 y1 y2
),(wxy

6.034 - Spring • 19

Gradient Descent

! "=
i

ii yyE 2)),((
2
1 wx Error on

training set

Ewww !"# $ Gradient
Descent

! "#="
i

iii yyyE),()),((wxwx ww Gradient of
Error

!
"

#
$
%

&

'

'

'

'
=(

nw
y

w
yy ,,
1

…w

6.034 - Spring • 50

Training Neural Nets
without overfitting, hopefully…

Given: Data set, desired outputs and a neural net with m weights.
Find a setting for the weights that will give good predictive
performance on new data. Estimate expected performance on new
data.
1.  Split data set (randomly) into three subsets:

•  Training set – used for picking weights
•  Validation set – used to stop training
•  Test set – used to evaluate performance

2.  Pick random, small weights as initial values
3.  Perform iterative minimization of error over training set.
4.  Stop when error on validation set reaches a minimum (to avoid

overfitting).
5.  Repeat training (from step 2) several times (avoid local

minima)
6.  Use best weights to compute error on test set, which is

estimate of performance on new data. Do not repeat training
to improve this.

Can use cross-validation if data set is too small to divide into three
subsets.

6.034 - Spring • 51

Training vs. Test Error

6.034 - Spring • 52

Training vs. Test Error

6.034 - Spring • 53

Overfitting is
not unique to
neural nets…

1-Nearest Neighbors Decision Trees

6.034 - Spring • 54

Overfitting in SVM

Radial Kernel !=0.1 Radial Kernel !=1

6.034 - Spring • 55

On-line vs off-line

There are two approaches to performing the error
minimization:

•  On-line training – present xi and yi* (chosen randomly
from the training set). Change the weights to reduce the
error on this instance. Repeat.

•  Off-line training – change weights to reduce the total error
on training set (sum over all instances).

On-line training is an approximation to gradient descent since
the gradient based on one instance is “noisy” relative to the
full gradient (based on all instances). This can be beneficial in
pushing the system out of shallow local minima.

6.034 - Spring 03 • 1

Feature Selection

• In many machine learning applications, there are
huge numbers of features

• text classification (# words)
• gene arrays (5,000 – 50,000)
• images (512 x 512 pixels)

6.034 - Spring 03 • 2

Feature Selection

• In many machine learning applications, there are
huge numbers of features

• text classification (# words)
• gene arrays (5,000 – 50,000)
• images (512 x 512 pixels)

• Too many features
• make algorithms run slowly
• risk overfitting

6.034 - Spring 03 • 3

Feature Selection

• In many machine learning applications, there are
huge numbers of features

• text classification (# words)
• gene arrays (5,000 – 50,000)
• images (512 x 512 pixels)

• Too many features
• make algorithms run slowly
• risk overfitting

• Find a smaller feature space
• subset of existing features
• new features constructed from old ones

6.034 - Spring 03 • 4

Feature Ranking
•  For each feature, compute a measure of its relevance

to the output
•  Choose the k features with the highest rankings
•  Correlation between feature j and output

•  Correlation measures how much x tends to deviate
from its mean on the same examples on which y
deviates from its mean

!!

!
""

""
=

i

i

i
j

i
j

i

i
j

i
j

yyxx

yyxx
jR

22)()(

))((
)(

!=
i

i
jj x

n
x 1

!=
i

iy
n

y 1

6.034 - Spring 03 • 5

Correlations in Heart Data

 thal=1 -0.52
 cp=4 0.51
 thal=3 0.48
 ca=0 -0.48
 oldpeak 0.42
 thalach -0.42
 exang 0.42
 slope=1 -0.38
 slope=2 0.35
 cp=3 -0.31
 sex 0.28
 ca=2 0.27
 cp=2 -0.25
 ca=1 0.23
 age 0.23
 …

ca=0

0

yes
thal = 1

0 1

no

ca = 0

exang age < 57.5 chest-pain 1

0 1 oldpk<3.2

0 1

Top
15
of
25

6.034 - Spring 03 • 6

Correlations in MPG > 22 data

 cyl=4 0.82
displacement -0.77
 weight -0.77
 horsepower -0.67
 cyl=8 -0.58
 origin=1 -0.54
 model-year 0.44
 origin=3 0.40
 cyl=6 -0.37
acceleration 0.35
 origin=2 0.26

0

displacement > 189.5

0

1

weight > 2224.5

year > 78.5 1

1

weight > 2775

6.034 - Spring 03 • 7

XOR Bites Back

• As usual, functions with XOR in them will cause us
trouble

• Each feature will, individually, have a correlation
of 0 (it occurs positively as much as negatively
for positive outputs)

• To solve XOR, we need to look at groups of

features together

6.034 - Spring 03 • 8

Subset Selection

• Consider subsets of variables
• too hard to consider all possible subsets
• wrapper methods: use training set or cross-

validation error to measure the goodness of
using different feature subsets with your
classifier

• greedily construct a good subset by adding or
subtracting features one by one

6.034 - Spring 03 • 9

Forward Selection

Given a particular classifier you want to use
F = {}

For each fj
Train classifier with inputs F + {fj}

Add fj that results in lowest-error classifier
to F

Continue until F is the right size, or error has
quit decreasing

6.034 - Spring 03 • 10

Forward Selection

Given a particular classifier you want to use
F = {}

For each fj
Train classifier with inputs F + {fj}

Add fj that results in lowest-error classifier
to F

Continue until F is the right size, or error has
quit decreasing

• Decision trees, by themselves, do something
similar to this

6.034 - Spring 03 • 11

Forward Selection

Given a particular classifier you want to use
F = {}

For each fj
Train classifier with inputs F + {fj}

Add fj that results in lowest-error classifier
to F

Continue until F is the right size, or error has
quit decreasing

• Decision trees, by themselves, do something
similar to this

• Trouble with XOR

6.034 - Spring 03 • 12

Backward Elimination

Given a particular classifier you want to use
F = all features

For each fj
Train classifier with inputs F - {fj}

Remove fj that results in lowest-error
classifier from F

Continue until F is the right size, or error
increases too much

6.034 - Spring 03 • 13

Forward Selection on Auto Data
Forward Selection - Auto

0.89

0.9

0.91

0.92

0.93

0.94

0.95

1 2 3 4 5 6 7 8 9 10 11
Number of Features

10
-w

ay
 X

-v
al

 A
cc

ur
ac

y

Series1

cross-
validation
accuracy

number of features added

6.034 - Spring 03 • 14

Backward Elimination on Auto Data

Backward Selection - Auto

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 2 3 4 5 6 7 8 9 10 11
Number of Features Eliminated

10
-w

ay
 X

-v
al

 A
cc

ur
ac

y

Series1

number of features eliminated

cross-
validation
accuracy

6.034 - Spring 03 • 15

Forward Selection on Heart Data
Forward Selection - Hear

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Number of features

10
-w

ay
 X

-v
al

 A
cc

ur
ac

y

Series1

number of features added

cross-
validation
accuracy

6.034 - Spring 03 • 16

Backward Elimination on Heart Data
Backward Elimination - Heart

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of features eliminated

10
-w

ay
 X

-v
al

 A
cc

ur
ay

number of features eliminated

cross-
validation
accuracy

6.034 - Spring 03 • 17

Recursive Feature Elimination
Train a linear SVM or neural network
Remove the feature with the smallest weight
Repeat

• More efficient than regular backward elimination
• Requires only one training phase per feature

6.034 - Spring 03 • 18

Clustering

• Form clusters of inputs
• Map the clusters into outputs
• Given a new example, find its cluster, and generate

the associated output

6.034 - Spring 03 • 19

Clustering

• Form clusters of inputs
• Map the clusters into outputs
• Given a new example, find its cluster, and generate

the associated output

6.034 - Spring 03 • 20

Clustering

• Form clusters of inputs
• Map the clusters into outputs
• Given a new example, find its cluster, and generate

the associated output

6.034 - Spring 03 • 21

Clustering Criteria

• small distances between points within a cluster
• large distances between clusters

• Need a distance measure, as in nearest neighbor

6.034 - Spring 03 • 22

K-Means Clustering

• Tries to minimize

• Only gets, greedily, to a local optimum

!

xi " µ j

2

i#Sj

$
j=1

k

$

of clusters

elements of
cluster j

mean of elts
in cluster j

squared dist from
point to mean

6.034 - Spring 03 • 23

K-means Algorithm
Choose k
Randomly choose k points Cj to be cluster centers

6.034 - Spring 03 • 24

K-means Algorithm
Choose k
Randomly choose k points Cj to be cluster centers
Loop

Partition the data into k classes Sj according
to which of the Cj they’re closest to

For each Sj, compute the mean of its elements
and let that be the new cluster center

6.034 - Spring 03 • 25

K-means Algorithm
Choose k
Randomly choose k points Cj to be cluster centers
Loop

Partition the data into k classes Sj according
to which of the Cj they’re closest to

For each Sj, compute the mean of its elements
and let that be the new cluster center

Stop when centers quit moving

• Guaranteed to terminate

6.034 - Spring 03 • 26

K-means Algorithm
Choose k
Randomly choose k points Cj to be cluster centers
Loop

Partition the data into k classes Sj according
to which of the Cj they’re closest to

For each Sj, compute the mean of its elements
and let that be the new cluster center

Stop when centers quit moving

• Guaranteed to terminate
• If a cluster becomes empty, re-initialize the center

6.034 - Spring 03 • 27

K-Means Example

6.034 - Spring 03 • 28

K-Means Example

6.034 - Spring 03 • 29

K-Means Example

6.034 - Spring 03 • 30

K-Means Example

6.034 - Spring 03 • 31

K-Means Example

6.034 - Spring 03 • 32

K-Means Example

6.034 - Spring 03 • 33

K-Means Example

6.034 - Spring 03 • 34

K-Means Example

6.034 - Spring 03 • 35

K-Means Example

6.034 - Spring 03 • 36

K-Means Example

6.034 - Spring 03 • 37

Principal Components Analysis

• Given an n-dimensional real-valued space, data are
often nearly restricted to a lower-dimensional
subspace

• PCA helps us find such a subspace whose
coordinates are linear functions of the originals

6.034 - Spring 03 • 38

Principal Components Analysis

• Given an n-dimensional real-valued space, data are
often nearly restricted to a lower-dimensional
subspace

• PCA helps us find such a subspace whose
coordinates are linear functions of the originals

6.034 - Spring 03 • 39

Principal Components Analysis

• Given an n-dimensional real-valued space, data are
often nearly restricted to a lower-dimensional
subspace

• PCA helps us find such a subspace whose
coordinates are linear functions of the originals

http://www.okstate.edu/artsci/
botany/ordinate/PCA.htm

6.034 - Spring 03 • 40

Cartoon of algorithm

• Normalize the data (subtract mean, divide by
stdev)

6.034 - Spring 03 • 41

Cartoon of algorithm

• Normalize the data (subtract mean, divide by
stdev)

• Find the line along which the data has the most
variability: that’s the first principal component

6.034 - Spring 03 • 42

Cartoon of algorithm

• Normalize the data (subtract mean, divide by
stdev)

• Find the line along which the data has the most
variability: that’s the first principal component

• Project the data into the n-1 dimensional space
orthogonal to the line

• Repeat

6.034 - Spring 03 • 43

Cartoon of algorithm

• Normalize the data (subtract mean, divide by
stdev)

• Find the line along which the data has the most
variability: that’s the first principal component

• Project the data into the n-1 dimensional space
orthogonal to the line

• Repeat

• Result is a new orthogonal set of axes
• First k give a lower-D space that represents the

variability of the data as well as possible

6.034 - Spring 03 • 44

Cartoon of algorithm

• Normalize the data (subtract mean, divide by
stdev)

• Find the line along which the data has the most
variability: that’s the first principal component

• Project the data into the n-1 dimensional space
orthogonal to the line

• Repeat

• Result is a new orthogonal set of axes
• First k give a lower-D space that represents the

variability of the data as well as possible
• Really: find the eigenvectors of the covariance

matrix with the k largest eigenvalues

6.034 - Spring 03 • 45

Linear Transformations Only

There are fancier methods that can find this structure

6.034 - Spring 03 • 46

Insensitive to Classification Task

6.034 - Spring 03 • 47

Insensitive to Classification Task

There are fancier methods that can take class into account

6.034 - Spring 03 • 48

Validating a Classifier

0 1

0 A B

1 C D

predicted y

true
 y

6.034 - Spring 03 • 49

Validating a Classifier

0 1

0 A B

1 C D

predicted y

true
 y

false positive
type 1 error

6.034 - Spring 03 • 50

Validating a Classifier

0 1

0 A B

1 C D

predicted y

true
 y

false positive
type 1 error

false negative
type 2 error

6.034 - Spring 03 • 51

Validating a Classifier

• sensitivity: P(predict 1 | actual 1) = D/(C+D)
•  “true positive rate” (TP)

0 1

0 A B

1 C D

predicted y

true
 y

false positive
type 1 error

false negative
type 2 error

6.034 - Spring 03 • 52

Validating a Classifier

• sensitivity: P(predict 1 | actual 1) = D/(C+D)
•  “true positive rate” (TP)

• specificity: P(predict 0 | actual 0) = A/(A+B)

0 1

0 A B

1 C D

predicted y

true
 y

false positive
type 1 error

false negative
type 2 error

6.034 - Spring 03 • 53

Validating a Classifier

• sensitivity: P(predict 1 | actual 1) = D/(C+D)
•  “true positive rate” (TP)

• specificity: P(predict 0 | actual 0) = A/(A+B)

• false-alarm rate: P(predict 1 | actual 0) = B/(A+B)
•  “false positive rate” (FP)

0 1

0 A B

1 C D

predicted y

true
 y

false positive
type 1 error

false negative
type 2 error

6.034 - Spring 03 • 54

Cost Sensitivity

• Predict whether a patient has pseuditis based on
blood tests

• Disease is often fatal if left untreated
• Treatment is cheap and side-effect free

6.034 - Spring 03 • 55

Cost Sensitivity

• Predict whether a patient has pseuditis based on
blood tests

• Disease is often fatal if left untreated
• Treatment is cheap and side-effect free

• Which classifier to use?
• Classifier 1: TP = 0.9, FP = 0.4

6.034 - Spring 03 • 56

Cost Sensitivity

• Predict whether a patient has pseuditis based on
blood tests

• Disease is often fatal if left untreated
• Treatment is cheap and side-effect free

• Which classifier to use?
• Classifier 1: TP = 0.9, FP = 0.4
• Classifier 2: TP = 0.7, FP = 0.1

6.034 - Spring 03 • 57

Build Costs into Classifier

• Assess costs of both types of error
• use a different splitting criterion for decision

trees
• make error function for neural nets asymmetric;

different costs for each kind of error
• use different values of C for SVMs depending on

kind of error

6.034 - Spring 03 • 58

Tunable Classifiers

• Classifiers that have a threshold (naïve Bayes,
neural nets, SVMs) can be adjusted, post learning,
by changing the threshold, to make different trade-
offs between type 1 and type 2 errors

6.034 - Spring 03 • 59

Tunable Classifiers

• Classifiers that have a threshold (naïve Bayes,
neural nets, SVMs) can be adjusted, post learning,
by changing the threshold, to make different trade-
offs between type 1 and type 2 errors

• C1,C2: costs of errors
• P: percentage of positive examples
• x: tunable threshold
• TP(x): true positive rate at threshold x
• FP(x): false positive rate at threshold x

• Expected Cost = C2P(1-TP(x)) + C1(1-P)FP(x)
• choose x to minimize expected cost

6.034 - Spring 03 • 60

ROC Curves

•  “receiver operating characteristics”

1

0

TP

FP 1

ideal

6.034 - Spring 03 • 61

ROC Curves

•  “receiver operating characteristics”

1

0

TP

FP

always
output 1

always
output 0

1

ideal

6.034 - Spring 03 • 62

ROC Curves

•  “receiver operating characteristics”

1

0

TP

FP

always
output 1

always
output 0

1

parametric
function of x

ideal

6.034 - Spring 03 • 63

ROC Curves

•  “receiver operating characteristics”

1

0

TP

FP

always
output 1

always
output 0

1

blue curve
dominates red

ideal

6.034 - Spring 03 • 64

Many more issues!

• Missing data
• Many examples in one class, few in other (fraud

detection)
• Expensive data (active learning)
• …

