Bayes Nets II: Independence Day

CS 5300 / CS 6300
Artificial Intelligence
Spring 2010
Hal Daumé III
hal@cs.utah.edu

www.cs.utah.edu/~hal/courses/2010S_AI

Many slides courtesy of Dan Klein, Stuart Russell, or Andrew Moore
Reasoning Patterns and D-Separation

Sargur Srihari
srihari@cedar.buffalo.edu
Example Bayes’ Net
Bayes’ Nets

- A Bayes’ net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is $P(X \mid e)$?
 - Representation: given a fixed BN, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?
Bayes’ Net Semantics

➢ A Bayes’ net:
 ➢ A set of nodes, one per variable \(X \)
 ➢ A directed, acyclic graph
 ➢ A conditional distribution of each variable conditioned on its parents (the parameters \(\theta \))

\[
P(X | a_1 \ldots a_n)
\]

➢ Semantics:
 ➢ A BN **defines** a joint probability distribution over its variables:

\[
P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i))
\]
Building the (Entire) Joint

➢ We can take a Bayes’ net and build any entry from the full joint distribution it encodes

\[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]

➢ Typically, there’s no reason to build ALL of it
➢ We build what we need on the fly

➢ To emphasize: every BN over a domain implicitly defines a joint distribution over that domain, specified by local probabilities and graph structure
Example: Coin Flips

Only distributions whose variables are absolutely independent can be represented by a Bayes’ net with no arcs.
Example: Traffic

\[P(R) \]

<table>
<thead>
<tr>
<th></th>
<th>1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td></td>
</tr>
<tr>
<td>\neg r</td>
<td>3/4</td>
</tr>
</tbody>
</table>

\[P(T|R) \]

<table>
<thead>
<tr>
<th></th>
<th>t</th>
<th>\neg t</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>3/4</td>
<td>1/4</td>
</tr>
<tr>
<td>\neg r</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

\[P(r, \neg t) = \]
Example: Alarm Network

P(b, e, ¬a, j, m) =

| B | E | P(A|B,E) |
|---|---|----------|
| T | T | .95 |
| T | F | .94 |
| F | T | .29 |
| F | F | .001 |

P(B) = .001
P(E) = .002

| A | P(J|A) |
|---|-------|
| T | .90 |
| F | .05 |

| A | P(M|A) |
|---|-------|
| T | .70 |
| F | .01 |

Burglary → Alarm
Earthquake → Alarm
JohnCalls → Alarm
MaryCalls → Alarm
Example: Traffic II

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame

Diagram:

- L (Low pressure) → R (It rains)
- R (It rains) → B (Ballgame)
- R (It rains) → T (Traffic)
- D (Roof drips) → T (Traffic)
Size of a Bayes’ Net

➢ How big is a joint distribution over N Boolean variables?

➢ How big is an N-node net if nodes have k parents?

➢ Both give you the power to calculate \(P(X_1, X_2, \ldots X_n) \)

➢ BNs: Huge space savings!

➢ Also easier to elicit local CPTs

➢ Also turns out to be faster to answer queries (next class)
Bayes’ Nets

➢ So far:
 ➢ What is a Bayes’ net?
 ➢ What joint distribution does it encode?

➢ Next: how to answer queries about that distribution
 ➢ Key idea: conditional independence
 ➢ Last class: assembled BNs using an intuitive notion of conditional independence as causality
 ➢ Today: formalize these ideas
 ➢ Main goal: answer queries about conditional independence and influence

➢ After that: how to answer numerical queries (inference)
Bayesian Network: Student Model

Graph and CPDs

Val(I) = \{i^0 = \text{low intelligence}, \ i^1 = \text{high intelligence}\}

Val(D) = \{d^0 = \text{easy}, \ d^1 = \text{hard}\}

Val(G) = \{g^1 = A, \ g^2 = B, \ g^3 = C\}

Val(S) = \{s^0 = \text{low}, \ s^1 = \text{high}\}

Val(L) = \{l^0 = \text{weak}, \ l^1 = \text{strong}\}

\[
P(D, I, G, S, L) = P(D)P(I)P(G \mid D, I)P(S \mid I)P(L \mid G)
\]
\[
P(i^1, d^0, g^2, s^1, l^0) = P(i^1)P(d^0)P(g^2 \mid i^1, d^0)P(s^1 \mid i^1)P(l^0 \mid g^2)
\]
\[
= 0.3 \cdot 0.6 \cdot 0.08 \cdot 0.8 \cdot 0.4 = 0.004608
\]
Reasoning Patterns

Reasoning about a student George using the model

- **Causal Reasoning**
 - George is interested in knowing as to how likely he is to get a strong letter (based on intelligence, difficulty)?

- **Evidential Reasoning**
 - Recruiter is interested in knowing whether George is intelligent (based on letter, SAT)
Causal Reasoning

1. How likely is George to get a strong letter (knowing nothing else)?
 • $P(l^1) = 0.502$
 • Obtained by summing-out other variables in joint distribution

2. But George is not so intelligent (i^0)
 • $P(l^1|i^0) = 0.389$

3. Next we find out ECON101 is easy (d^0)
 • $P(l^1|i^0, d^0) = 0.513$

Query is Example of Causal Reasoning:
Predicting downstream effects of factors such as intelligence

Observe how probabilities change as evidence is obtained

$P(D, I, G, S, l^1) = \sum_{D, I, G, S} P(D)P(I)P(G|D, I)P(S|I)P(l^1|G)$
Evidential Reasoning

- Recruiter wants to hire intelligent student
- A priori George is 30% likely to be intelligent
 \[P(i^1) = 0.3 \]
- Finds that George received grade \(C (g^3) \) in ECON101
 \[P(i^1 | g^3) = 0.079 \]
- Similarly probability class is difficult goes up from 0.4 to
 \[P(d^1 | g^3) = 0.629 \]
- If recruiter has lost grade but has letter
 \[P(i^1 | l^0) = 0.14 \]

- Recruiter has both grade and letter
 \[P(i^1 | l^0, g^3) = 0.079 \]
 - Same as if he had only grade
 - Letter is immaterial
- Reasoning from effects to causes is called evidential reasoning
Intercausal reasoning

- Recruiter has grade (letter does not matter)
 \[P(i^1|g^3) = P(i^1|l^0,g^3) = 0.079 \]
- Recruiter receives high SAT score (leads to dramatic increase)
 \[P(i^1|g^3,s^1) = 0.578 \]
- Intuition:
 - High SAT score outweighs poor grade since low intelligence rarely gets good SAT scores
 - Smart students more likely to get Cs in hard classes
- Probability of class is difficult also goes up from
 \[P(d^1|g^3) = 0.629 \] to
 \[P(d^1|g^3,s^1) = 0.76 \]
Explaining Away

An example:

- Given grade
 \[P(i^1|l^0,g^3)=0.079 \]
- If we observe ECON101 is a hard class
 \[P(i^1|g^3,d^1)=0.11 \]
- We have provided partial explanation for George’s performance in ECON101

Another example:

- If George gets a B in ECON101
 \[P(i^1|g^2)=0.175 \]
- If we observe ECON101 is a hard class
 \[P(i^1|g^2,d^1)=0.34 \]
- We have explained away the poor grade via the difficulty of the class

Explaining away is one type of intercausal reasoning

- Different causes of the same effect can interact
- All determined by probability calculation rather than heuristics
Intercausal Reasoning is Common in Human Reasoning

Another example of explaining away

- Binary Variables
- Fever & Sore Throat can be caused by mono and flu
- When flu is diagnosed, probability of mono is reduced (although mono could still be present)
- It provides an alternative explanation of symptoms

\[P(m^1|s^1) > P(m^1|s^1,f^1) \]
Another Type of Intercausal Reasoning

- Binary Variables
 - Murder (leaf node)
 - Motive and Opportunity are causal nodes
- Binary Variables X, Y, Z
- X and Y both increase the probability of Murder
 - $P(z^I|x^I) > P(z^I)$
 - $P(z^I|y^I) > P(z^I)$
- Each of X and Y increase probability of other
 - $P(x^I > z^I) < P(x^I|y^I, z^I)$
 - $P(y^I|z^I) < P(y^I|x^I, z^I)$

Can go in any direction Different from Explaining Away
Dependencies and Independencies

• Crucial for understanding network behavior
• Independence properties are important for answering queries
 – Exploited to reduce computation of inference
 – A distribution P that factorizes over G satisfies $I(G)$
 – Are there other independencies that can be read off directly from G?
 • That hold for every P that factorizes over G
Conditional Independence

- Reminder: independence
- X and Y are independent if
 \[\forall x, y \quad P(x, y) = P(x)P(y) \quad \implies \quad X \perp Y \]

- X and Y are conditionally independent given Z
 \[\forall x, y, z \quad P(x, y|z) = P(x|z)P(y|z) \quad \implies \quad X \perp Y|Z \]

- (Conditional) independence is a property of a distribution
Example: Independence

➢ For this graph, you can fiddle with θ (the CPTs) all you want, but you won’t be able to represent any distribution in which the flips are dependent!

\[
\begin{align*}
X_1 & \quad X_2 \\
\begin{array}{c|c}
P(X_1) & P(X_2) \\
\hline
h & h \\
t & t
\end{array}
\end{align*}
\]

All distributions
Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded.
- The graph structure guarantees certain (conditional) independences.
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs.
Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can calculate using algebra (really tedious)
 - If no, can prove with a counter example
- Example:

 \[
 \begin{array}{c}
 X \\
 \end{array}
 \begin{array}{c}
 Y \\
 \end{array}
 \begin{array}{c}
 Z \\
 \end{array}
 \]

- Question: are X and Z independent?
 - Answer: not *necessarily*, we’ve seen examples otherwise: low pressure causes rain which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they *could* be independent: how?
Direct Connection between X and Y

- X and Y are correlated regardless of any evidence about any other variables
 - E.g., Feature Y and character X are correlated
 - Grade G and Letter L are correlated

- If X and Y are directly connected we can get examples where they influence each other regardless of Z
Indirect Connection betwn X and Y

- Four cases where X and Y are connected via Z
 1. Indirect causal effect
 2. Indirect evidential effect
 3. Common cause
 4. Common effect

- We will see that first three cases are similar while fourth case (V-structure) is different
1. Indirect Causal Effect: $X \rightarrow Z \rightarrow Y$

- **Cause** X cannot influence effect Y if Z observed
 - Observed Z blocks influence
- **If Grade is observed then I does not influence L**
 - Intell influences Letter if Grade is unobserved
Causal Chains

➢ This configuration is a “causal chain”

\[P(x, y, z) = P(x)P(y|x)P(z|y) \]

➢ Is \(X \) independent of \(Z \) given \(Y \)?

\[P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z|y) \]

\(\text{Yes!} \)

➢ Evidence along the chain “blocks” the influence

\(X: \text{Low pressure} \)

\(Y: \text{Rain} \)

\(Z: \text{Traffic} \)
2. Indirect Evidential Effect: \(Y \rightarrow Z \rightarrow X \)

- Evidence \(X \) can influence \(Y \) via \(Z \) only if \(Z \) is unobserved
 - Observed \(Z \) blocks influence
- If Grade unobserved, Letter influences assessment of Intelligence
- Dependency is a symmetric notion
 - \(X \perp Y \) does not hold then \(Y \perp X \) does not hold either

\[Z = \text{Grade} \]
3. Common Cause: $X \leftrightarrow Z \rightarrow Y$

- X can influence Y if and only if Z is not observed
 - Observed Z blocks
- Grade is correlated with SAT score
- But if Intelligence is observed then SAT provides no additional information
Common Cause

➢ Another basic configuration: two effects of the same cause
➢ Are X and Z independent?
➢ Are X and Z independent given Y?

\[
P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}
\]

\[
= P(z|y)
\]

Yes!

➢ Observing the cause blocks influence between effects.
4. Common Effect (V-structure) $X \rightarrow Z \leftarrow Y$

- Influence cannot flow on trail $X \rightarrow Z \leftarrow Y$ if Z is not observed
 - Observed Z enables
 - Opposite to previous 3 cases (Observed Z blocks)

- When G not observed I and D are independent
- When G is observed, I and D are correlated

I ind $D | \sim G$
Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: remember the ballgame and the rain causing traffic, no correlation?
 - Still need to prove they must be (try it!)
 - Are X and Z independent given Y?
 - No: remember that seeing traffic put the rain and the ballgame in competition?
 - This is backwards from the other cases
 - Observing the effect enables influence between effects.
Active Trail

- Grade is not observed
- Observe weak letter
 - Which indicates low grade
 - Suffices to correlate D and I
- When influence can flow from X to Y via Z then trail $X\rightarrow Z\rightarrow Y$ is active

Summary

Causal trail: $X\rightarrow Z\rightarrow Y$: active iff Z not observed

Evidential Trail: $X\leftarrow Z\leftarrow Y$: active iff Z is not observed

Common Cause: $X\leftarrow Z\rightarrow Y$: active iff Z is not observed

Common Effect: $X\rightarrow Z\leftarrow Y$: active iff either Z or one of its descendants is observed
D-separation definition

• Let X, Y and Z be three sets of nodes in G.

• X and Y are d-separated given Z denoted $d_{-}sep_{G}(X:Y|Z)$ if there is no active trail between any node $X \in X$ and $Y \in Y$ given Z.

• That is, nodes in X cannot influence nodes in Y.

• Provides notion of separation between nodes in a directed graph ("directed" separation).
Independencies from d-separation

• Consider variables pairwise using d-separation

\[I(G) = \{(D \perp I, S, L | \phi), (I \perp D, S, L | \phi), \]
\[(G \perp L, S | D, I), (L \perp I, D, S | G), (S \perp D, G, L | I), (D \perp S | I)\} \]

– Also called Markov independencies

• Definition:

\[I(G) = \{(X \perp Y | Z): d-sep_G(X:Y|Z)\} \]
The General Case

- Any complex example can be analyzed using these three canonical cases

- General question: in a given BN, are two variables independent (given evidence)?

- Solution: analyze the graph
Reachability

➢ Recipe: shade evidence nodes

➢ Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent

➢ Almost works, but not quite
 ➢ Where does it break?
 ➢ Answer: the v-structure at T doesn’t count as a link in a path unless “active”
Reachability (the Bayes’ Ball)

- Correct algorithm:
 - Shade in evidence
 - Start at source node
 - Try to reach target by search
 - States: pair of (node X, previous state S)

- Successor function:
 - X unobserved:
 - To any child
 - To any parent if coming from a child
 - X observed:
 - From parent to parent
 - If you can’t reach a node, it’s conditionally independent of the start node given evidence
Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence variables \(\{Z\} \)?
 - Look for “active paths” from X to Y
 - No active paths = independence!

- A path is active if each triple is either a:
 - Causal chain \(A \rightarrow B \rightarrow C \) where B is unobserved (either direction)
 - Common cause \(A \leftarrow B \rightarrow C \) where B is unobserved
 - Common effect (aka \(v \)-structure) \(A \rightarrow B \leftarrow C \) where B or one of its descendents is observed
Example

\[A \perp W \]

\[A \perp W | R \]

Yes

Diagram:
- **aliens**
- **watch**
- **late**
- **report**

The diagram shows a Bayesian network with nodes for aliens, watch, late, and report, with edges indicating conditional dependencies.
Example

\[L \perp T' | T \quad Yes \]
\[L \perp B \quad Yes \]
\[L \perp B | T \]
\[L \perp B | T' \]
\[L \perp B | T', R \quad Yes \]
Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I’m sad

- Questions:

\[
T \perp D \\
T \perp D \mid R \\
T \perp D \mid R, S
\]
Causality?

- When Bayes’ nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - **Topology only guaranteed to encode conditional independence**
Example: Traffic

- Basic traffic net
- Let’s multiply out the joint

\[

\begin{array}{c|c}
 R & P(R) \\
 \hline
 r & 1/4 \\
 \neg r & 3/4 \\
\end{array}
\]

\[

\begin{array}{c|c|c}
 T & P(T|R) \\
 \hline
 r & t & 3/4 \\
 r & \neg t & 1/4 \\
 \neg r & t & 1/2 \\
 \neg r & \neg t & 1/2 \\
\end{array}
\]

\[

\begin{array}{c|c|c}
 T & P(T, R) \\
 \hline
 r & t & 3/16 \\
 r & \neg t & 1/16 \\
 \neg r & t & 6/16 \\
 \neg r & \neg t & 6/16 \\
\end{array}
\]
Example: Reverse Traffic

- Reverse causality?

<table>
<thead>
<tr>
<th>T</th>
<th>R</th>
</tr>
</thead>
</table>

\[
P(T) = \begin{array}{c|c}
 \text{t} & 9/16 \\
 \sim \text{t} & 7/16 \\
\end{array}
\]

\[
P(R|T) = \begin{array}{c|c|c}
 \text{t} & \text{r} & 1/3 \\
 & \sim \text{r} & 2/3 \\
 \sim \text{t} & \text{r} & 1/7 \\
 & \sim \sim \text{r} & 6/7 \\
\end{array}
\]

\[
P(T, R) = \begin{array}{c|c|c}
 \text{r} & \text{t} & 3/16 \\
 \text{r} & \sim \text{t} & 1/16 \\
 \sim \text{r} & \text{t} & 6/16 \\
 \sim \text{r} & \sim \text{t} & 6/16 \\
\end{array}
\]
Example: Coins

- Extra arcs don’t prevent representing independence, just allow non-independence

\[
\begin{array}{c|c}
X_1 & h & 0.5 \\
& t & 0.5 \\
\end{array}
\quad
\begin{array}{c|c}
X_2 & h & 0.5 \\
& t & 0.5 \\
\end{array}
\quad
\begin{array}{c|c|c|c}
P(X_1) & h & 0.5 \\
& t & 0.5 \\
\end{array}
\quad
\begin{array}{c|c|c|c}
P(X_2|X_1) & h|h & 0.5 \\
& t|h & 0.5 \\
& h|t & 0.5 \\
& t|t & 0.5 \\
\end{array}
\]
Alternate BNs

- MaryCalls
- JohnCalls
- Alarm
- Burglary
- Earthquake

- B
- E
- A
- J
- M
Summary

➢ Bayes nets compactly encode joint distributions

➢ Guaranteed independencies of distributions can be deduced from BN graph structure

➢ The Bayes’ ball algorithm (aka d-separation)

➢ A Bayes’ net may have other independencies that are not detectable until you inspect its specific distribution
Independencies in a BN

- Graph with CPDs is equivalent to a set of independence assertions

\[P(D, I, G, S, L) = P(D)P(I)P(G \mid D, I)P(S \mid I)P(L \mid G) \]

- Local Conditional Independence Assertions (starting from leaf nodes):

 \[I(G) = \{(L \perp I, D, S \mid G), \quad L \text{ is conditionally independent of all other nodes given parent } G \}
 \]
 \[(S \perp D, G, L \mid I), \quad S \text{ is conditionally independent of all other nodes given parent } I \]
 \[(G \perp S \mid D, I), \quad \text{Even given parents, } G \text{ is NOT independent of descendant } L \]
 \[(I \perp D \mid \phi), \quad \text{Nodes with no parents are marginally independent} \]
 \[(D \perp I, S \mid \phi) \]

- Parents of a variable shield it from probabilistic influence
 - Once value of parents known, no influence of ancestors
 - Information about descendants can change beliefs about a node
Soundness and Completeness

- Formalizing notion of d-separation
- **Soundness Theorem**
 - If a distribution P factorizes according to G then $I(G) \subseteq I(P)$
- A distribution P is faithful to graph G if any independence in P is reflected in G
 - G is then called a Perfect Map
- **Completeness Theorem**
 - Definition of $I(G)$ is the maximal one
- Thus d-separation test precisely characterizes independencies that hold for P
Algorithm for d-separation

- Enumerating all trails is inefficient
 - Number of trails is exponential with graph size
- Linear time algorithm has two phases
- Algorithm $\text{Reachable}(G,X,Z)$ returns nodes for X
- Phase 1 (simple)
 - Traverse bottom-up from leaves marking all nodes in Z or descendants in Z; to enable v-structures
- Phase 2 (subtle)
 - Traverse top-down from X to Y stopping when blocked by a node
I-Equivalence

- Conditional assertion statements can be the same with different structures
- Two graphs K_1 and K_2 are I-equivalent if $I(K_1) = I(K_2)$
- Skeleton of a BN graph G is an undirected graph with an edge for every edge in G
- If two BN graphs have the same set of skeletons and v-structures then they are I-equivalent

Same skeleton
Same v-structure $X \rightarrow Y \leftarrow Z$