TEMPORAL PROBABILITY MODELS

Chapter 15, Sections 1-5

Chapter 15, Sections 1–5 1

Outline

- \diamond Time and uncertainty
- \diamondsuit Inference: filtering, prediction, smoothing
- \diamond Hidden Markov models
- \diamond Kalman filters (a brief mention)
- \diamondsuit Dynamic Bayesian networks
- \diamond Particle filtering

Time and uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

 $\mathbf{X}_t = \text{set of unobservable state variables at time } t$ e.g., $BloodSugar_t$, $StomachContents_t$, etc.

 $\mathbf{E}_t = \text{set of observable evidence variables at time } t$ e.g., $MeasuredBloodSugar_t$, $PulseRate_t$, $FoodEaten_t$

This assumes **discrete time**; step size depends on problem

Notation: $\mathbf{X}_{a:b} = \mathbf{X}_a, \mathbf{X}_{a+1}, \dots, \mathbf{X}_{b-1}, \mathbf{X}_b$

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$

First-order Markov process: $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$ Second-order Markov process: $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-2}, \mathbf{X}_{t-1})$

Sensor Markov assumption: $\mathbf{P}(\mathbf{E}_t | \mathbf{X}_{0:t}, \mathbf{E}_{0:t-1}) = \mathbf{P}(\mathbf{E}_t | \mathbf{X}_t)$

Stationary process: transition model $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$ and sensor model $\mathbf{P}(\mathbf{E}_t | \mathbf{X}_t)$ fixed for all t

Example

First-order Markov assumption not exactly true in real world!

Possible fixes:

- 1. Increase order of Markov process
- 2. Augment state, e.g., add $Temp_t$, $Pressure_t$

Example: robot motion.

Augment position and velocity with $Battery_t$

Inference tasks

Filtering: $\mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ belief state—input to the decision process of a rational agent

Prediction: $\mathbf{P}(\mathbf{X}_{t+k}|\mathbf{e}_{1:t})$ for k > 0evaluation of possible action sequences; like filtering without the evidence

Smoothing: $\mathbf{P}(\mathbf{X}_k | \mathbf{e}_{1:t})$ for $0 \le k < t$

better estimate of past states, essential for learning

Most likely explanation: $\arg \max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t} | \mathbf{e}_{1:t})$

speech recognition, decoding with a noisy channel

Filtering

Aim: devise a **recursive** state estimation algorithm:

 $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}, \mathbf{e}_{t+1})$$

= $\alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}, \mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$
= $\alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$

I.e., prediction + estimation. Prediction by summing out \mathbf{X}_t :

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

= $\alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$

 $\mathbf{f}_{1:t+1} = \text{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1})$ where $\mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ Time and space **constant** (independent of t)

Filtering example

Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t})$$

= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k},\mathbf{e}_{1:k})$
= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$
= $\alpha \mathbf{f}_{1:k}\mathbf{b}_{k+1:t}$

Backward message computed by a backwards recursion:

$$\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) = \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

= $\sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$
= $\sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Most likely explanation

Most likely sequence \neq sequence of most likely states!!!!

Most likely path to each \mathbf{x}_{t+1}

= most likely path to some \mathbf{x}_t plus one more step

 $\max_{\mathbf{x}_{1}...\mathbf{x}_{t}} \mathbf{P}(\mathbf{x}_{1},\ldots,\mathbf{x}_{t},\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_{t}} \left(\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_{t}) \max_{\mathbf{x}_{1}...\mathbf{x}_{t-1}} P(\mathbf{x}_{1},\ldots,\mathbf{x}_{t-1},\mathbf{x}_{t}|\mathbf{e}_{1:t}) \right)$

Identical to filtering, except $\mathbf{f}_{1:t}$ replaced by

 $\mathbf{m}_{1:t} = \max_{\mathbf{x}_1 \dots \mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \mathbf{X}_t | \mathbf{e}_{1:t}),$

I.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state *i*. Update has sum replaced by max, giving the Viterbi algorithm:

 $\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{x}_t} (\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) \mathbf{m}_{1:t})$

Viterbi example

Hidden Markov models

 \mathbf{X}_t is a single, discrete variable (usually \mathbf{E}_t is too) Domain of X_t is $\{1, \ldots, S\}$

Transition matrix $\mathbf{T}_{ij} = P(X_t = j | X_{t-1} = i)$, e.g., $\begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$

Sensor matrix \mathbf{O}_t for each time step, diagonal elements $P(e_t|X_t = i)$ e.g., with $U_1 = true$, $\mathbf{O}_1 = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix}$

Forward and backward messages as column vectors:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{b}_{k+1:t} = \mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2:t}$$

Forward-backward algorithm needs time $O(S^2t)$ and space O(St)

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

Can avoid storing all forward messages in smoothing by running forward algorithm backwards:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

Dynamic Bayesian networks

 \mathbf{X}_t , \mathbf{E}_t contain arbitrarily many variables in a replicated Bayes net

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Sparse dependencies \Rightarrow exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has $20 \times 2^3 = 160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$

Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with t

Rollup filtering: add slice t + 1, "sum out" slice t using variable elimination

Largest factor is $O(d^{n+1})$, update cost $O(d^{n+2})$ (cf. HMM update cost $O(d^{2n})$)

Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

Particle filtering

Basic idea: ensure that the population of samples ("particles") tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for \mathbf{e}_t

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots 10^5 -dimensional state space

Particle filtering contd.

Assume consistent at time t: $N(\mathbf{x}_t | \mathbf{e}_{1:t}) / N = P(\mathbf{x}_t | \mathbf{e}_{1:t})$

Propagate forward: populations of \mathbf{x}_{t+1} are

 $N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t}) = \sum_{\mathbf{x}_t} P(\mathbf{x}_{t+1}|\mathbf{x}_t) N(\mathbf{x}_t|\mathbf{e}_{1:t})$

Weight samples by their likelihood for \mathbf{e}_{t+1} :

 $W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t})$

Resample to obtain populations proportional to W:

$$N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1})/N = \alpha W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t})$$

= $\alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})\Sigma_{\mathbf{x}_{t}}P(\mathbf{x}_{t+1}|\mathbf{x}_{t})N(\mathbf{x}_{t}|\mathbf{e}_{1:t})$
= $\alpha' P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})\Sigma_{\mathbf{x}_{t}}P(\mathbf{x}_{t+1}|\mathbf{x}_{t})P(\mathbf{x}_{t}|\mathbf{e}_{1:t})$
= $P(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1})$

Particle filtering performance

Approximation error of particle filtering remains bounded over time, at least empirically—theoretical analysis is difficult

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need

- transition model $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$
- sensor model $\mathbf{P}(\mathbf{E}_t | \mathbf{X}_t)$

Tasks are filtering, prediction, smoothing, most likely sequence; all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used for speech recognition

Kalman filters allow n state variables, linear Gaussian, $O(n^3)$ update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs