
A brief history of reasoning

450b.c. Stoics propositional logic, inference (maybe)
322b.c. Aristotle “syllogisms” (inference rules), quantifiers
1565 Cardano probability theory (propositional logic + uncertainty)
1847 Boole propositional logic (again)
1879 Frege first-order logic
1922 Wittgenstein proof by truth tables
1930 Gödel ∃ complete algorithm for FOL
1930 Herbrand complete algorithm for FOL (reduce to propositional)
1931 Gödel ¬∃ complete algorithm for arithmetic
1960 Davis/Putnam “practical” algorithm for propositional logic
1965 Robinson “practical” algorithm for FOL—resolution

Chapter 9 3

Resolution

Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals

︸ ︷︷ ︸

clauses

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

Resolution inference rule (for CNF): complete for propositional logic

`1 ∨ · · · ∨ `k, m1 ∨ · · · ∨mn

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn

where `i and mj are complementary literals. E.g.,

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

P1,3 ∨ P2,2, ¬P2,2

P1,3

Resolution is sound and complete for propositional logic

Chapter 7 67

Conversion to CNF

B1,1⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α⇔ β with (α ⇒ β) ∧ (β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α⇒ β with ¬α ∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨B1,1)

3. Move ¬ inwards using de Morgan’s rules and double-negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨B1,1)

4. Apply distributivity law (∨ over ∧) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨B1,1) ∧ (¬P2,1 ∨B1,1)

Chapter 7 68

Resolution algorithm

Proof by contradiction, i.e., show KB ∧ ¬α unsatisfiable

function PL-Resolution(KB,α) returns true or false

inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB ∧ ¬α

new←{}

loop do

for each Ci, Cj in clauses do

resolvents←PL-Resolve(Ci,Cj)

if resolvents contains the empty clause then return true

new← new ∪ resolvents

if new ⊆ clauses then return false

clauses← clauses ∪new

Chapter 7 69

Resolution example

KB = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1 α = ¬P1,2

P1,2

P1,2

P2,1

P1,2 B1,1

B1,1 P2,1 B1,1 P1,2 P2,1 P2,1
P1,2B1,1 B1,1

P1,2B1,1 P2,1B1,1P2,1 B1,1

P1,2 P2,1 P1,2

Chapter 7 70

Efficient propositional inference
Two families of efficient algorithms for propositional

inference:

Complete backtracking search algorithms
•  DPLL algorithm (Davis, Putnam, Logemann, Loveland)

•  Incomplete local search algorithms

–  WalkSAT algorithm

The DPLL algorithm
Determine if an input propositional logic sentence (in CNF) is

satisfiable.

Improvements over truth table enumeration:

1.  Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

2.  Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A), A and B are pure, C is

impure.
Make a pure symbol literal true.

3.  Unit clause heuristic

Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

The DPLL algorithm

The WalkSAT algorithm
•  Incomplete, local search algorithm

•  Evaluation function: The min-conflict heuristic of

minimizing the number of unsatisfied clauses

•  Balance between greediness and randomness

The WalkSAT algorithm

Hard satisfiability problems

•  Consider random 3-CNF sentences. e.g.,
 (¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨
¬B ∨ E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C)

m = number of clauses
n = number of symbols

– Hard problems seem to cluster near m/n = 4.3
(critical point)

Hard satisfiability problems

Hard satisfiability problems

•  Median runtime for 100 satisfiable random 3-
CNF sentences, n = 50

Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to facts

Propositional logic allows partial/disjunctive/negated information
(unlike most data structures and databases)

Propositional logic is compositional:
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent

(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares”

except by writing one sentence for each square

Chapter 8 3

First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . . .

• Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, . . .

• Functions: father of, best friend, third inning of, one more than, end of
. . .

Chapter 8 4

Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB, . . .

Predicates Brother, >, . . .

Functions Sqrt, LeftLegOf, . . .

Variables x, y, a, b, . . .

Connectives ∧ ∨ ¬ ⇒ ⇔
Equality =
Quantifiers ∀ ∃

Chapter 8 6

Deducing hidden properties

Properties of locations:
∀x, t At(Agent, x, t) ∧ Smelt(t) ⇒ Smelly(x)
∀x, t At(Agent, x, t) ∧ Breeze(t) ⇒ Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
∀ y Breezy(y) ⇒ ∃ x Pit(x) ∧ Adjacent(x, y)

Causal rule—infer effect from cause
∀x, y P it(x) ∧ Adjacent(x, y) ⇒ Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
∀ y Breezy(y) ⇔ [∃ x Pit(x) ∧ Adjacent(x, y)]

Chapter 8 26

Knowledge base for the wumpus world

“Perception”
∀ b, g, t Percept([Smell, b, g], t) ⇒ Smelt(t)
∀ s, b, t Percept([s, b,Glitter], t) ⇒ AtGold(t)

Reflex: ∀ t AtGold(t) ⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?
∀ t AtGold(t) ∧ ¬Holding(Gold, t) ⇒ Action(Grab, t)

Holding(Gold, t) cannot be observed
⇒ keeping track of change is essential

Chapter 8 25

Reduction to propositional inference

Suppose the KB contains just the following:

∀x King(x) ∧Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have

King(John) ∧Greedy(John) ⇒ Evil(John)
King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John),King(Richard) etc.

Chapter 9 7

Reduction contd.

Claim: a ground sentence∗ is entailed by new KB iff entailed by original KB

Claim: every FOL KB can be propositionalized so as to preserve entailment

Idea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms,
e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Chapter 9 8

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.
E.g., from

∀x King(x) ∧Greedy(x) ⇒ Evil(x)
King(John)
∀ y Greedy(y)
Brother(Richard, John)

it seems obvious that Evil(John), but propositionalization produces lots of
facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are p · nk instantiations

With function symbols, it gets nuch much worse!

Chapter 9 9

Resolution: brief summary

Full first-order version:

`1 ∨ · · · ∨ `k, m1 ∨ · · · ∨mn

(`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn)θ

where Unify(`i,¬mj) = θ.

For example,

¬Rich(x) ∨ Unhappy(x)
Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

Apply resolution steps to CNF (KB ∧ ¬α); complete for FOL

Chapter 9 43

Conversion to CNF

Everyone who loves all animals is loved by someone:
∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

1. Eliminate biconditionals and implications

∀x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)]

2. Move ¬ inwards: ¬∀x, p ≡ ∃ x ¬p, ¬∃x, p ≡ ∀x ¬p:

∀x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)]
∀x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]
∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]

Chapter 9 44

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

5. Drop universal quantifiers:

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

6. Distribute ∧ over ∨:

[Animal(F (x)) ∨ Loves(G(x), x)] ∧ [¬Loves(x, F (x)) ∨ Loves(G(x), x)]

Chapter 9 45

