A brief history of reasoning

450B.C.	Stoics	propositional logic, inference (maybe)
322B.C.	Aristotle	"syllogisms" (inference rules), quantifiers
1565	Cardano	probability theory (propositional logic + uncertainty)
1847	Boole	propositional logic (again)
1879	Frege	first-order logic
1922	Wittgenstein	proof by truth tables
1930	Gödel	\exists complete algorithm for FOL
1930	Herbrand	complete algorithm for FOL (reduce to propositional)
1931	Gödel	$\neg \exists$ complete algorithm for arithmetic
1960	Davis/Putnam	"practical" algorithm for propositional logic
1965	Robinson	"practical" algorithm for FOL—resolution

Resolution

Conjunctive Normal Form (CNF—universal)

$$
\text { conjunction of } \underbrace{\text { disjunctions of literals }}_{\text {clauses }}
$$

$$
\text { E.g., }(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)
$$

Resolution inference rule (for CNF): complete for propositional logic

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}}
$$

where ℓ_{i} and m_{j} are complementary literals. E.g.,

$$
\frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}
$$

Resolution is sound and complete for propositional logic

Conversion to CNF

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move \neg inwards using de Morgan's rules and double-negation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law (\vee over \wedge) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Resolution algorithm

Proof by contradiction, i.e., show $K B \wedge \neg \alpha$ unsatisfiable

```
function PL-Resolution \((K B, \alpha)\) returns true or false
    inputs: \(K B\), the knowledge base, a sentence in propositional logic
            \(\alpha\), the query, a sentence in propositional logic
    clauses \(\leftarrow\) the set of clauses in the CNF representation of \(K B \wedge \neg \alpha\)
    new \(\leftarrow\}\)
    loop do
        for each \(C_{i}, C_{j}\) in clauses do
        resolvents \(\leftarrow \mathrm{PL}-\operatorname{Resolve}\left(C_{i}, C_{j}\right)\)
        if resolvents contains the empty clause then return true
            new \(\leftarrow\) new \(\cup\) resolvents
    if new \(\subseteq\) clauses then return false
    clauses \(\leftarrow\) clauses \(\cup\) new
```


Resolution example

$K B=\left(B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge \neg B_{1,1} \alpha=\neg P_{1,2}$

Efficient propositional inference

Two families of efficient algorithms for propositional inference:

Complete backtracking search algorithms

- DPLL algorithm (Davis, Putnam, Logemann, Loveland)
- Incomplete local search algorithms
- WalkSAT algorithm

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:

1. Early termination

A clause is true if any literal is true.
A sentence is false if any clause is false.
2. Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses $(A \vee \neg B),(\neg B \vee \neg C),(C \vee A), A$ and B are pure, C is impure.
Make a pure symbol literal true.
3. Unit clause heuristic

Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false inputs: s, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of s
symbols \leftarrow a list of the proposition symbols in s
return DPLL(clauses, symbols, [])
function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value \leftarrow Find-PURe-Symbol (symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols $-P,[P=$ value \mid model $]$)
P, value \leftarrow Find-Unit-Clause (clauses, model)
if P is non-null then return DPLL(clauses, symbols $-P,[P=$ value \mid model $]$)
$P \leftarrow \mathrm{FIRST}($ symbols); rest $\leftarrow \operatorname{REST}($ symbols)
return DPLL(clauses, rest, $[P=$ true \mid model $]$) or
DPLL(clauses, rest, $[P=$ false \mid model $]$)

The WalkSAT algorithm

- Incomplete, local search algorithm
- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses
- Balance between greediness and randomness

The WalkSAT algorithm

function WALKSAT(clauses, p, max-flips) returns a satisfying model or failure inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a "random walk" move max-flips, number of flips allowed before giving up
model \leftarrow a random assignment of true/false to the symbols in clauses for $i=1$ to max-flips do
if model satisfies clauses then return model
clause \leftarrow a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol
from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses return failure

Hard satisfiability problems

- Consider random 3-CNF sentences. e.g., $(\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee$ $\neg B \vee E) \wedge(E \vee \neg D \vee B) \wedge(B \vee E \vee \neg C)$
$m=$ number of clauses
$n=$ number of symbols
- Hard problems seem to cluster near $m / n=4.3$ (critical point)

Hard satisfiability problems

Hard satisfiability problems

- Median runtime for 100 satisfiable random 3CNF sentences, $n=50$

Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to factsPropositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)(ㄹ)
Propositional logic is compositional:
meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
©
Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
© Propositional logic has very limited expressive power (unlike natural language)
E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First-order logic

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries ...
- Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, end of

Syntax of FOL: Basic elements

$\begin{array}{ll}\text { Constants } & \text { KingJohn, } 2, U C B, \ldots \\ \text { Predicates } & \text { Brother, }>, \ldots \\ \text { Functions } & \text { Sqrt, LeftLeg } O f, \ldots \\ \text { Variables } & x, y, a, b, \ldots \\ \text { Connectives } & \vee \vee \neg \Rightarrow \\ \text { Equality } & = \\ \text { Quantifiers } & \forall \exists\end{array}$

Deducing hidden properties

Properties of locations:
$\forall x, t$ At (Agent, $x, t) \wedge \operatorname{Smelt}(t) \Rightarrow \operatorname{Smelly}(x)$
$\forall x, t \operatorname{At}(\operatorname{Agent}, x, t) \wedge \operatorname{Breeze}(t) \Rightarrow \operatorname{Breezy}(x)$
Squares are breezy near a pit:
Diagnostic rule-infer cause from effect

$$
\forall y \operatorname{Breezy}(y) \Rightarrow \exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)
$$

Causal rule-infer effect from cause

$$
\forall x, y \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y) \Rightarrow \operatorname{Breezy}(y)
$$

Neither of these is complete-e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

$$
\forall y \operatorname{Breezy}(y) \Leftrightarrow\left[\begin{array}{ll}
\exists x & \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)]
\end{array}\right.
$$

Knowledge base for the wumpus world

```
"Perception"
\(\forall b, g, t \operatorname{Percept}([S m e l l, b, g], t) \Rightarrow \operatorname{Smelt}(t)\)
\(\forall s, b, t \operatorname{Percept}([s, b, G l i t t e r], t) \Rightarrow \operatorname{AtGold}(t)\)
Reflex: \(\forall t\) AtGold \((t) \Rightarrow \operatorname{Action}(G r a b, t)\)
```

Reflex with internal state: do we have the gold already?
$\forall t$ AtGold $(t) \wedge \neg$ Holding $($ Gold,$t) \Rightarrow$ Action $(G r a b, t)$
Holding (Gold, t) cannot be observed
\Rightarrow keeping track of change is essential

Reduction to propositional inference

Suppose the KB contains just the following:

```
\forallx King(x)^Greedy(x) => Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)
```

Instantiating the universal sentence in all possible ways, we have

```
\(\operatorname{King}(J o h n) \wedge \operatorname{Greedy}(J o h n) \Rightarrow \operatorname{Evil}(J o h n)\)
King (Richard) \(\wedge\) Greedy(Richard) \(\Rightarrow\) Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)
```

The new KB is propositionalized: proposition symbols are
King(John), Greedy(John), Evil(John), King(Richard) etc.

Reduction contd.

Claim: a ground sentence* is entailed by new KB iff entailed by original KB
Claim: every FOL KB can be propositionalized so as to preserve entailment Idea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms, e.g., Father (Father(Father(John)))

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositional KB

Idea: For $n=0$ to ∞ do create a propositional $K B$ by instantiating with depth- n terms see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed
Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.
E.g., from

```
\(\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)\)
King(John)
\(\forall y\) Greedy \((y)\)
Brother(Richard, John)
```

it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant

With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations
With function symbols, it gets nuch much worse!

Resolution: brief summary

Full first-order version:

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\left(\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}\right) \theta}
$$

where $\operatorname{Unify}\left(\ell_{i}, \neg m_{j}\right)=\theta$.
For example,

$$
\begin{aligned}
& \neg \operatorname{Rich}(x) \vee \operatorname{Unhappy}(x) \\
& \frac{\operatorname{Rich}(\text { Ken })}{\text { Unhappy }(\text { Ken })}
\end{aligned}
$$

with $\theta=\{x /$ Ken $\}$
Apply resolution steps to $C N F(K B \wedge \neg \alpha)$; complete for FOL

Conversion to CNF

Everyone who loves all animals is loved by someone:

$$
\forall x[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{Loves}(x, y)] \Rightarrow[\exists y \operatorname{Loves}(y, x)]
$$

1. Eliminate biconditionals and implications

$$
\forall x[\neg \forall y \neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]
$$

2. Move \neg inwards: $\neg \forall x, p \equiv \exists x \neg p, \neg \exists x, p \equiv \forall x \neg p$:
```
\forallx[\existsy \neg(\negAnimal(y)\vee Loves(x,y))]\vee [\existsy Loves (y,x)]
\forallx[\existsy \negᄀ\operatorname{Animal}(y)\wedge\neg\operatorname{Loves}(x,y)]\vee [\existsy Loves (y,x)]
\forallx [\existsy Animal (y)^\negLoves (x,y)]\vee [\existsy Loves ( }y,x)
```


Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one
$\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z \operatorname{Loves}(z, x)]$
4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall x[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
5. Drop universal quantifiers:
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
6. Distribute \wedge over \vee :

$$
[\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]
$$

