CS 188: Artificial Intelligence
Fall 2011

Lecture 10: Reinforcement Learning
9/27/2011

Dan Klein — UC Berkeley

Many slides over the course adapted from either Stuart
Russell or Andrew Moore

Reinforcement Learning

Basic idea:

= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must (learn to) act so as to maximize expected rewards

state reward

! Fisi

Lgi

—=(n

F

j Vi

Environment]—-l—

action
a,

tlp
Rectangle

Passive RL

e |- =
= Simplified task

* You are given a policy mn(s) di . =

= You don’t know the transitions T(s,a,s’) |- -

You don’t know the rewards R(s,a,s’) —
Goal: learn the state values
... what policy evaluation did

= In this case:
= Learner “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= We'll get to the active case soon

= This is NOT offline planning! You actually take actions in the
world and see what happens...

Example: Direct Evaluation

y

= Episodes: 2

(1,1) up -1 (1,1) up -1 ,

(1,2) up -1 (1,2) up -1

(1,2) up -1 (1,3) right -1 .

(1,3) right -1 (2,3) right -1

(2,3) right -1 (3,3) right -1 ! z 3 4

(3,3) right -1 (3,2) up -1 vy=1,R=-1

(3,2) up -1 (4,2) exit -100

(3,3) right -1 (done)

(4,3) exit +100 V(2,3) ~ (96 +-103) /2 = -3.5

(done) V(3,3) ~ (99 + 97 +-102) /3 = 31.3

tlp
Rectangle

Recap: Model-Based Policy Evaluation

= Simplified Bellman updates to
calculate V for a fixed policy:

= New V is expected one-step-look-
ahead using current V

= Unfortunately, need T and R

Vi(s) =0

T1(s) = > T(s,m(s),s)[R(s,m(s),5") + V()]

Model-Based Learning

= |dea:
= Learn the model empirically through experience
= Solve for values as if the learned model were correct

= Simple empirical model learning
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) when we experience (s,a,s’)

= Solving the MDP with the learned model
= lterative policy evaluation, for example

V1 (s) — D T(s,m(s), s) [R(s,m(s),8) + Vi (s)]

Example: Model-Based Learning

y

Episodes: :
1,1) up -1 (1,1) up -1)
1,2) up -1 (1,2) up -1
1,2) up -1 (1,3) right -1 1
1,3) right -1 (2,3) right -1
2,3) right -1 (3,3) right -1 ! 2 :
3,3) right -1 (3.2) up -1 v=1
3,2) up -1 (4,2) exit -100
3,3) right -1 (done) T(<8,3>, right, <4,3>)=1/3
4,3) exit +100 T(<2,3>, right, <3,3>) = 2/ 2
done)

Model-Free Learning

Want to compute an expectation weighted by P(x):
E[f(z)] =32, P(x)f(z)

Model-based: estimate P(x) from samples, compute expectation

P(x) = nun(a)/N x

Model-free: estimate expectation directly from samples

Why does this work? Because samples appear with the right
frequencies!

Sample-Based Policy Evaluation?

Vi1(s) > T(s,m(s),s)[R(s,m(s),s") + vV (s)]

= Who needs T and R? Approximate the
expectation with samples of s’ (drawn from T!)

sampler = R(s,m(s),s}) + vV (s7) AN
samples = R(s,7(s),s5) + Vi (sh) =~ Asy

sampley, = R(s,m(s), 5}) + 7V (s})

rewind time to get sample

1 AI 2
T 'most! But we can't
Viiq1(s) < ’ E sample;

i after sample from state s.

11

Temporal-Difference Learning

= Big idea: learn from every experience!

= Update V(s) each time we experience (s,a,s’,r) s
= Likely s’ will contribute updates more often (s)
s, 71(S)
= Temporal difference learning
= Policy still fixed! A
= Move values toward value of whatever S
successor occurs: running average!
/ /
Sample of V(s): sample = R(s,n(s),s") + ’YVW(S)
Update to V(s): VT(s) «— (1 —a)V"(s) + (a)sample

Same update: V7T(s) «— V™(s) + a(sample — V™ (s))

Exponential Moving Average

= Exponential moving average
= The running interpolation update

Ty = (1 — Qf) "Ip—1t+ Q- Ty
= Makes recent samples more important

zpo+(1—a) zp 1+ (1—a) 2y o+...
I+(1-a)+(1—-a)2+...

T

= Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate can give converging averages

Example: TD Policy Evaluation

VT(s) — (1 = a)V™(s) + a [R(s,7(s),5) + 4V (5)]

(1,1) up -1 (1,1) up -1 || =] -
(1,2) up -1 (1,2) up -1 |t t |3
(1,2) up -1 (1,3) right -1 -
(1,3) right -1 (2,3) right -1 oy
(2,3) right -1 (3,3) right -1 3
(3,3) right -1 (3,2) up -1
(3,2) up -1 (4,2) exit -100 2
(3,3) right -1 (done)
(4,3) exit +100 1
(done) Takey=1,0=0.5

1 2 3 4

14

tlp
Rectangle

Problems with TD Value Learning

TD value leaning is a model-free way
to do policy evaluation)
However, if we want to turn values into ~~

a (new) policy, we’re sunk:

w(s) = argmaxQ*(s,a)

Q*(s,a) = ZT(S, a,s’) [R(s, a,s) + ')/V*(s/)]

Idea: learn Q-values directly
Makes action selection model-free too!

15

Active RL

Goal: learn the optimal policy / values
... what value iteration did!

» |n this case:
= |Learner makes choices!
= Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the
world and find out what happens...

s = =
= Full reinforcement learning
= You don’t know the transitions T(s,a,s’) 2|t . =
= You don’t know the rewards R(s,a,s’) ol |- -
= You can choose any actions you like P— ;

Detour: Q-Value lteration

= Value iteration: find successive approx optimal values
= Start with V,'(s) = 0, which we know is right (why?)
= Given V;, calculate the values for all states for depth i+1:

Vig1(s) « mC?XZT(s,a, ") [R(s,a, s + 7\/}(3/)}

S
= But Q-values are more useful!

= Start with Q,'(s,a) = 0, which we know is right (why?)
= Given Q/, calculate the g-values for all g-states for depth i+1:

Qit1(s:a) = L T(s,a,8) [R(s,a,8) 4+ maxQy(s',a)

Q-Learning

= Q-Learning: sample-based Q-value iteration

= Learn Q*(s,a) values
» Receive a sample (s,a,s’,r)
» Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s") +~ max Q(s',a)
a

» Incorporate the new estimate into a running average:
Q(s,a) «— (1 — a)Q(s,a) + (a) [sample]

tlp
Rectangle

Q-Learning

= Q-learning produces tables of g-values:

tlp
Rectangle

Q-Learning Properties

» Amazing result: Q-learning converges to optimal policy
= If you explore enough
= If you make the learning rate small enough
= ... but not decrease it too quickly!
= Basically doesn’t matter how you select actions (!)

» Neat property: off-policy learning
= |learn optimal policy without following it (some caveats)

tlp
Rectangle

Exploration / Exploitation

= Several schemes for forcing exploration

» Simplest: random actions (e greedy)
= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

* Problems with random actions?

= You do explore the space, but keep thrashing
around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

20

Exploration Functions

= When to explore
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not (yet)
established

= Exploration function

= Takes a value estimate and a count, and returns an optimistic
utility, e.g. f(u,n) = u + k/n (exact form not important)

Qi+1(sa (1) o R(S a, S/) + Y ma/x Qi(S/7 (1/)

Qi+l(sa a’) o R<37 a, S/) + vy ma?X f(Qz(S/a a’/)a N(S/> al)>

22

The Story So Far: MDPs and RL

Things we know how to do:

= |f we know the MDP

Compute V*, Q*, n* exactly
Evaluate a fixed policy =

= |f we don’t know the MDP

We can estimate the MDP then solve

We can estimate V for a fixed policy =
We can estimate Q*(s,a) for the
optimal policy while executing an
exploration policy

Techniques:

Model-based DPs

Value lteration
Policy evaluation

Model-based RL

Model-free RL

Value learning
Q-learning

23

Q-Learning

» |n realistic situations, we cannot possibly learn
about every single state!
* Too many states to visit them all in training
= Too many states to hold the g-tables in memory

» |nstead, we want to generalize:

= Learn about some small number of training states
from experience

= Generalize that experience to new, similar states

» This is a fundamental idea in machine learning, and
we’ll see it over and over again

Example: Pacman

» |et’s say we discover
through experience
that this state is bad:

* |n naive q learning, we
know nothing about
this state or its q
states:

= Or even this one!

12

tlp
Rectangle

Feature-Based Representations

= Solution: describe a state using
a vector of features (properties)
= Features are functions from states
to real numbers (often 0/1) that
capture important properties of the
state
Example features:
= Distance to closest ghost
Distance to closest dot
Number of ghosts
1/ (dist to dot)?
Is Pacman in a tunnel? (0/1)

@ * + s 2 s s s

= |s it the exact state on this slide?
Can also describe a g-state (s, a)
with features (e.g. action moves
closer to food)

Linear Feature Functions

» Using a feature representation, we can write a
g function (or value function) for any state
using a few weights:

V(s) = w1f1(s) +wafa(s) + ... + wnfn(s)
Q(Sa CL) - wlfl(sa a)+w2f2(37 a)+ . -+wnfn(37 CL)

= Advantage: our experience is summed up in a
few powerful numbers

» Disadvantage: states may share features but
actually be very different in value!

14

Function Approximation

Q(S7 CL) = wlfl(87 CL)+U)2]C2(S, a)+ . -+7~Unfn(3: CL)

= Q-learning with linear g-functions:
transition = (s,a,r,s)
difference = [r +ymax Qs a’)] —Q(s,a)
Q(s,a) «— Q(s,a) + «[difference] Exact Q’s
w; «— w; + « [difference] f;(s,a) Approximate Q's

= Intuitive interpretation:
= Adjust weights of active features

= E.g. if something unexpectedly bad happens, disprefer all states
with that state’s features

= Formal justification: online least squares

15

Example: Q-Pacman

Q(s,a) = 4.0fpor(s,a) — 1.0fgs7(s,a)
fpor(s, NORTH) = 0.5
fasT(s, NORTH) = 1.0

s,a) =41
Jg((s,a,)s’) :—500 G;N?;TOH
dif ference = —501
wpor «+— 4.0+ «[-501]0.5
wgsT < —1.0 + «[-501] 1.0

Q(s,a) = 3.0fpor(s,a) — 3.0fgsr(s,a)

tlp
Rectangle

