Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards

[DEMOS]
Reinforcement Learning

Basic idea:
- Receive feedback in the form of rewards
- Agent’s utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
Reinforcement Learning

- **Reinforcement learning:**
 - Still assume an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
 - Still looking for a policy \(\pi(s) \)

- **New twist: don’t know T or R**
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

Passive RL

- **Simplified task**
 - You are given a policy \(\pi(s) \)
 - You don’t know the transitions \(T(s,a,s') \)
 - You don’t know the rewards \(R(s,a,s') \)
 - Goal: learn the state values
 - … what policy evaluation did

- **In this case:**
 - Learner “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the active case soon
 - This is NOT offline planning! You actually take actions in the world and see what happens…
Example: Direct Evaluation

- Episodes:
 - (1,1) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (3,3) right -1
 - (4,3) exit +100
 - (done)

\[
\begin{align*}
V(2,3) &\approx \frac{96 + (-103)}{2} = -3.5 \\
V(3,3) &\approx \frac{99 + 97 + (-102)}{3} = 31.3
\end{align*}
\]

Recap: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
 - New V is expected one-step-look-ahead using current V
 - Unfortunately, need T and R

\[
\begin{align*}
V_0^\pi(s) &= 0 \\
V_{i+1}^\pi(s) &\leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^\pi(s')]
\end{align*}
\]
Example: Direct Evaluation

- **Episodes:**
 - (1,1) up -1
 - (1,2) up -1
 - (1,2) up -1
 - (1,2) right -1
 - (1,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (3,3) right -1
 - (3,2) up -1
 - (4,2) exit -100
 - (done)

![Diagram](image)

V(2,3) \sim (96 + -103) / 2 = -3.5

V(3,3) \sim (99 + 97 + -102) / 3 = 31.3

Recap: Model-Based Policy Evaluation

- **Simplified Bellman updates to calculate V for a fixed policy:**
 - New V is expected one-step-look-ahead using current V
 - Unfortunately, need T and R

\[V^\pi_0(s) = 0 \]

\[V^\pi_{i+1}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi_i(s')] \]
Model-Based Learning

- **Idea:**
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct

- **Simple empirical model learning**
 - Count outcomes for each \(s,a \)
 - Normalize to give estimate of \(T(s,a,s') \)
 - Discover \(R(s,a,s') \) when we experience \((s,a,s') \)

- **Solving the MDP with the learned model**
 - Iterative policy evaluation, for example

\[
V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')]
\]

Example: Model-Based Learning

- **Episodes:**

<table>
<thead>
<tr>
<th>Episode</th>
<th>Movement</th>
<th>Reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1) up</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>(1,2) up</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>(1,3) right</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>(2,3) right</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>(3,3) right</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>(3,2) up</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>(3,3) right</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>(4,3) exit</td>
<td></td>
<td>+100</td>
</tr>
<tr>
<td>(done)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(T(<3,3>, \text{ right, } <4,3>) = 1 / 3 \)

\(T(<2,3>, \text{ right, } <3,3>) = 2 / 2 \)
Model-Based Learning

- **Idea:**
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct

- **Simple empirical model learning**
 - Count outcomes for each \(s,a \)
 - Normalize to give estimate of \(T(s,a,s') \)
 - Discover \(R(s,a,s') \) when we experience \((s,a,s') \)

- **Solving the MDP with the learned model**
 - Iterative policy evaluation, for example

\[
V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')]
\]

Example: Model-Based Learning

- **Episodes:**
 - \((1,1)\) up -1
 - \((1,2)\) up -1
 - \((1,3)\) right -1
 - \((2,3)\) right -1
 - \((3,3)\) right -1
 - \((3,2)\) up -1
 - \((3,2)\) exit -100
 - \((3,3)\) right -1
 - \((4,3)\) exit +100
 - (done)
Example: Expected Age

Goal: Compute expected age of cs188 students

Known P(A)

\[E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \ldots \]

Without P(A), instead collect samples \([a_1, a_2, \ldots a_N]\)

Unknown P(A): “Model Based”

\[\hat{P}(a) = \frac{\text{num}(a)}{N} \]

\[E[A] \approx \sum_{a} \hat{P}(a) \cdot a \]

Unknown P(A): “Model Free”

\[E[A] \approx \frac{1}{N} \sum_{i} a_i \]

Model-Free Learning

- Want to compute an expectation weighted by P(x):
 \[E[f(x)] = \sum_{x} P(x) f(x) \]

- Model-based: estimate P(x) from samples, compute expectation
 \[x_i \sim P(x) \]
 \[\hat{P}(x) = \frac{\text{num}(x)}{N} \]
 \[E[f(x)] \approx \sum_{x} \hat{P}(x) f(x) \]

- Model-free: estimate expectation directly from samples
 \[x_i \sim P(x) \]
 \[E[f(x)] \approx \frac{1}{N} \sum_{i} f(x_i) \]

- Why does this work? Because samples appear with the right frequencies!
Sample-Based Policy Evaluation?

\[V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]

- Who needs \(T \) and \(R \)? Approximate the expectation with samples of \(s' \) (drawn from \(T \!)

\[
\text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_i^\pi(s'_1) \\
\text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_i^\pi(s'_2) \\
\vdots \\
\text{sample}_k = R(s, \pi(s), s'_k) + \gamma V_i^\pi(s'_k)
\]

\[V_{i+1}^\pi(s) \leftarrow \frac{1}{k} \sum_{i} \text{sample}_i \]

Almost! But we can’t rewind time to get sample after sample from state \(s \).

Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update \(V(s) \) each time we experience \((s,a,s',r)\)
 - Likely \(s' \) will contribute updates more often

- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

Sample of \(V(s) \):

\[\text{sample} = R(s, \pi(s), s') + \gamma V^\pi(s') \]

Update to \(V(s) \):

\[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \text{sample} \]

Same update:

\[V^\pi(s) \leftarrow V^\pi(s) + \alpha(\text{sample} - V^\pi(s)) \]
Sample-Based Policy Evaluation?

\[V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]

- Who needs T and R? Approximate the expectation with samples of s' (drawn from T!)

\[
\text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_i^\pi(s'_1) \\
\text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_i^\pi(s'_2) \\
\vdots \\
\text{sample}_k = R(s, \pi(s), s'_k) + \gamma V_i^\pi(s'_k)
\]

\[V_{i+1}^\pi(s) \leftarrow \frac{1}{k} \sum_i \text{sample}_i \]

Almost! But we can’t rewind time to get sample after sample from state s.

Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update \(V(s) \) each time we experience \((s,a,s',r) \)
 - Likely \(s' \) will contribute updates more often

- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

Sample of \(V(s) \):

\[\text{sample} = R(s, \pi(s), s') + \gamma V^\pi(s') \]

Update to \(V(s) \):

\[V^\pi(s) \leftarrow (1 - \alpha) V^\pi(s) + \alpha \text{sample} \]

Same update:

\[V^\pi(s) \leftarrow V^\pi(s) + \alpha (\text{sample} - V^\pi(s)) \]
Exponential Moving Average

- Exponential moving average
 - The running interpolation update
 \[x_n = (1 - \alpha) \cdot x_{n-1} + \alpha \cdot x_n \]
 - Makes recent samples more important
 \[\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots} \]
 - Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate can give converging averages

Example: TD Policy Evaluation

\[V^\pi(s) \leftarrow (1 - \alpha) V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right] \]

(1,1) up -1	(1,1) up -1
(1,2) up -1	(1,2) up -1
(1,3) right -1	(1,3) right -1
(2,3) right -1	(2,3) right -1
(3,3) right -1	(3,3) right -1
(3,2) up -1	(3,2) up -1
(3,2) up -1	(4,2) exit -100
(3,3) right -1	(done)
(4,3) exit +100	(done)

Take \(\gamma = 1, \alpha = 0.5 \)
Exponential Moving Average

- Exponential moving average
 - The running interpolation update
 \[x_n = (1 - \alpha) \cdot x_{n-1} + \alpha \cdot x_n \]
 - Makes recent samples more important
 \[\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots} \]
 - Forgets about the past (distant past values were wrong anyway)
 - Decreasing learning rate can give converging averages

Example: TD Policy Evaluation

\[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right] \]

- Take \(\gamma = 1, \alpha = 0.5 \)
Problems with TD Value Learning

- TD value learning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we’re sunk:

\[\pi(s) = \arg \max_a Q^*(s, a) \]
\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Idea: learn Q-values directly
- Makes action selection model-free too!

Active RL

- Full reinforcement learning
 - You don’t know the transitions \(T(s, a, s') \)
 - You don’t know the rewards \(R(s, a, s') \)
 - You can choose any actions you like
 - Goal: learn the optimal policy / values
 - … what value iteration did!

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens…
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we’re sunk:

\[\pi(s) = \arg \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Idea: learn Q-values directly
- Makes action selection model-free too!

Active RL

- Full reinforcement learning
 - You don’t know the transitions T(s,a,s’)
 - You don’t know the rewards R(s,a,s’)
 - You can choose any actions you like
 - Goal: learn the optimal policy / values
 - … what value iteration did!

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens…
Detour: Q-Value Iteration

- **Value iteration**: find successive approx optimal values
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i^*, calculate the values for all states for depth $i+1$:
 \[
 V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]
 \]

- But Q-values are more useful!
 - Start with $Q_0^*(s,a) = 0$, which we know is right (why?)
 - Given Q_i^*, calculate the q-values for all q-states for depth $i+1$:
 \[
 Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]
 \]

Q-Learning

- **Q-Learning**: sample-based Q-value iteration
- Learn $Q^*(s,a)$ values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s,a)$
 - Consider your new sample estimate:
 \[
 Q^*(s,a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]
 \]
 \[
 sample = R(s,a,s') + \gamma \max_{a'} Q(s',a')
 \]
 - Incorporate the new estimate into a running average:
 \[
 Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha [sample]
 \]
Detour: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i^*, calculate the values for all states for depth $i+1$:
 \[V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] \]

- But Q-values are more useful!
 - Start with $Q_0^*(s,a) = 0$, which we know is right (why?)
 - Given Q_i^*, calculate the q-values for all q-states for depth $i+1$:
 \[Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right] \]

Q-Learning

- Q-Learning: sample-based Q-value iteration
- Learn $Q^*(s,a)$ values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s,a)$
 - Consider your new sample estimate:
 \[Q^*(s,a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right] \]
 \[sample = R(s,a,s') + \gamma \max_{a'} Q(s',a') \]
 - Incorporate the new estimate into a running average:
 \[Q(s,a) \leftarrow (1 - \alpha)Q(s,a) + (\alpha) [sample] \]
Q-Learning

- Q-learning produces tables of q-values:

![Q-VALUES AFTER 1000 EPISODES]

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$ (exact form not important)

\[
Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q_i(s', a')
\]

\[
Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q_i(s', a'), N(s', a'))
\]
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - … but not decrease it too quickly!
 - Basically doesn’t matter how you select actions (!)

- Neat property: off-policy learning
 - learn optimal policy without following it (some caveats)

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy

 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions
Q-Learning Properties

- **Amazing result:** Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - … but not decrease it too quickly!
 - Basically doesn’t matter how you select actions (!)

- **Neat property:** off-policy learning
 - Learn optimal policy without following it (some caveats)

![Diagram of Q-tables](DEMO – Grid Q's)

Exploration / Exploitation

- **Several schemes for forcing exploration**
 - **Simplest:** random actions (ε-greedy)
 - Every time step, flip a coin
 - With probability ϵ, act randomly
 - With probability $1-\epsilon$, act according to current policy

 - **Problems with random actions?**
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ϵ over time
 - Another solution: exploration functions
Q-Learning

- Q-learning produces tables of q-values:

![Q-values after 1000 episodes]

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. \(f(u, n) = u + k/n \) (exact form not important)

\[
Q_{i+1}(s, a) \leftarrow \alpha \left(R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right)
\]

\[
Q_{i+1}(s, a) \leftarrow \alpha \left(R(s, a, s') + \gamma \max_{a'} f(Q_i(s', a'), N(s', a')) \right)
\]
The Story So Far: MDPs and RL

Things we know how to do:

- If we know the MDP
 - Compute V^*, Q^*, π^* exactly
 - Evaluate a fixed policy π

- If we don't know the MDP
 - We can estimate the MDP then solve
 - We can estimate V for a fixed policy π
 - We can estimate $Q^*(s,a)$ for the optimal policy while executing an exploration policy

Techniques:

- Model-based DPs
 - Value Iteration
 - Policy evaluation

- Model-based RL

- Model-free RL
 - Value learning
 - Q-learning
Exploration Functions

- **When to explore**
 - Random actions: explore a fixed amount
 - Better ideas: explore areas whose badness is not (yet) established, explore less over time

- **One way: exploration function**
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. \(f(u, n) = u + k/n \) (exact form not important)

\[
Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q_i(s', a')
\]

\[
Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q_i(s', a'), N(s', a'))
\]

Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we’ll see it over and over again
Example: Pacman

- Let’s say we discover through experience that this state is bad:

- In naïve q learning, we know nothing about this state or its q states:

- Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - …… etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Example: Pacman

- Let’s say we discover through experience that this state is bad:

- In naïve q learning, we know nothing about this state or its q states:

- Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[
V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
\]

\[
Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a)
\]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Function Approximation

\[
Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a)
\]

- Q-learning with linear q-functions:

 transition = (s, a, r, s')

 difference = \[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \]

 \[
 Q(s, a) \leftarrow Q(s, a) + \alpha \text{[difference]}
 \]

 \[
 w_i \leftarrow w_i + \alpha \text{[difference]} f_i(s, a)
 \]

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features

- Formal justification: online least squares
Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Function Approximation

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Q-learning with linear q-functions:

 transition = (s, a, r, s')

 difference = \[r + \gamma \max_a Q(s', a) - Q(s, a) \]

 \[Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \]

 \[w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \]

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features
- Formal justification: online least squares
Example: Q-Pacman

\[Q(s, a) = 4.0 f_{\text{DOT}}(s, a) - 1.0 f_{\text{GST}}(s, a) \]

\[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]
\[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[Q(s, a) = +1 \]
\[R(s, a, s') = -500 \]
\[\text{difference} = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]
\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{\text{DOT}}(s, a) - 3.0 f_{\text{GST}}(s, a) \]

Linear Regression

Prediction
\[\hat{y} = w_0 + w_1 f_1(x) \]

Prediction
\[\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x) \]