
Automated Planning 
Gerhard Wickler, U. Edinburgh 

Introduction and Overview 



Automated Planning: Introduction and Overview 2 

Overview 

! What is AI Planning? 
  A Conceptual Model for Planning 
  Restricting Assumptions 
  A Running Example: Dock-Worker 

Robots 



Automated Planning: Introduction and Overview 3 

Defining AI Planning 

  planning: 
• explicit deliberation process that chooses and 

organizes actions by anticipating their 
outcomes 

• aims at achieving some pre-stated objectives 
  AI planning: 

• computational study of this deliberation 
process 



Automated Planning: Introduction and Overview 4 

Why Study Planning in AI? 
  scientific goal of AI:  

understand intelligence 
•  planning is an important component of 

rational (intelligent) behaviour 

  engineering goal of AI:  
build intelligent entities  
•  build planning software for choosing 

and organizing actions for autonomous 
intelligent machines 



Automated Planning: Introduction and Overview 5 

Domain-Specific vs.  
Domain-Independent Planning 
  domain-specific planning: use specific 

representations and techniques adapted to each 
problem 
•  important domains: path and motion planning, perception 

planning, manipulation planning, communication planning 
  domain-independent planning: use generic 

representations and techniques 
•  exploit commonalities to all forms of planning 
•  leads to general understanding of planning 

  domain-independent planning complements 
domain-specific planning 



Automated Planning: Introduction and Overview 6 

Overview 

  What is AI Planning? 
! A Conceptual Model for Planning 
  Restricting Assumptions 
  A Running Example: Dock-Worker 

Robots 



Automated Planning: Introduction and Overview 7 

Why a Conceptual Model? 

  conceptual model: theoretical device for 
describing the elements of a problem 

  good for: 
•  explaining basic concepts 
•  clarifying assumptions 
•  analyzing requirements 
•  proving semantic properties 

  not good for: 
•  efficient algorithms and computational concerns 



Automated Planning: Introduction and Overview 8 

Conceptual Model for Planning: 
State-Transition Systems 
  A state-transition system is a 4-tuple 
Σ = (S,A,E,γ), where:	


•  S = {s1,s2,…} is a finite or recursively enumerable set of 

states;  
•  A = {a1,a2,…} is a finite or recursively enumerable set 

of actions; 
•  E = {e1,e2,…} is a finite or recursively enumerable set 

of events; and 
•  γ: S×(A∪E)→2S is a state transition function. 

  if a∈A and γ(s,a) ≠ ∅ then a is applicable in s	


  applying a in s will take the system to sʹ′∈γ(s,a) 

      



Automated Planning: Introduction and Overview 9 

State-Transition Systems as 
Graphs 

  A state-transition system Σ = (S,A,E,γ) 
can be represented by a directed 
labelled graph G = (NG,EG) where: 
•  the nodes correspond to the states in S, i.e. 

NG=S; and 
•  there is an arc from s∈NG to sʹ′∈NG, i.e. s→s
ʹ′∈EG, with label u∈(A∪E) if and only if sʹ′∈γ
(s,a). 



Automated Planning: Introduction and Overview 10 

State-Transition Graph Example: 
Missionaries and Cannibals 

1c 

1m 
1c 

2c 
1c 

2c 

1c 

2m 

1m 
1c 

1m 
1c 

1c 

2c 

1m 

2m 

1c 

2c 

1c 

1m 



Automated Planning: Introduction and Overview 11 

Objectives and Plans 
  state-transition system:  

•  describes all ways in which a system may evolve 
  plan:  

•  a structure that gives appropriate actions to apply in 
order to achieve some objective when starting from a 
given state 

  types of objective: 
•  goal state sg or set of goal states Sg	

•  satisfy some conditions over the sequence of states 
•  optimize utility function attached to states 
•  task to be performed 



Automated Planning: Introduction and Overview 12 

Planning and Plan Execution 
  planner:  

•  given: description of Σ, initial 
state, objective 

•  generate: plan that achieves 
objective 

  controller:  
•  given: plan, current state 

(observation function: η:S→O) 
•  generate: action 

  state-transition system: 
•  evolves as actions are executed 

and events occur 

Planner 

Controller 

System Σ 

Initial State 

Objectives 

Description of Σ 

Events 

Plan 

Actions Observations 



Automated Planning: Introduction and Overview 13 

Overview 

  What is AI Planning? 
  A Conceptual Model for Planning 
! Restricting Assumptions 
  A Running Example: Dock-Worker 

Robots 



Automated Planning: Introduction and Overview 14 

A0: Finite Σ	



  Assumption A0 
• system Σ has a finite set of states 

  Relaxing A0 
• why?  

•  to describe actions that construct or bring new 
objects into the world 

•  to handle numerical state variables 
•  issues: 

• decidability and termination of planners 



Automated Planning: Introduction and Overview 15 

A1: Fully Observable Σ	



  Assumption A1 
•  system Σ is fully observable, i.e. η is the identity 

function 

  Relaxing A1 
•  why?  

•  to handle states in which not every aspect is or can be 
known 

•  issues: 
•  if η(s)=o, η-1(o) usually more than one state (ambiguity) 
• determining the successor state 



Automated Planning: Introduction and Overview 16 

A2: Deterministic Σ	


  Assumption A2 

•  system Σ is deterministic, i.e. for all s∈S, u∈A∪E: |γ
(s,u)|≤1	



•  short form: γ(s,u)=sʹ′ for γ(s,u)={sʹ′}	


  Relaxing A2 

•  why?  
•  to plan with actions that may have multiple alternative 

outcomes 
•  issues: 

•  controller has to observe actual outcomes of actions 
•  solution plan may include conditional and iterative 

constructs 



Automated Planning: Introduction and Overview 17 

A3: Static Σ	



  Assumption A3 
• system Σ is static, i.e. E=∅  
• short form: Σ = (S,A,γ) for Σ = (S,A,∅,γ)  

  Relaxing A3 
• why?  

•  to model a world in which events can occur 
•  issues: 

• world becomes nondeterministic from the point of 
view of the planner (same issues) 



Automated Planning: Introduction and Overview 18 

A4: Restricted Goals 
  Assumption A4 

•  the planner handles only restricted goals that are 
given as an explicit goal state sg or set of goal states Sg	



  Relaxing A4 
•  why?  

•  to handle constraints on states and plans, utility 
functions, or tasks 

•  issues: 
•  representation and reasoning over constraints, utility, 

and tasks 



Automated Planning: Introduction and Overview 19 

A5: Sequential Plans 

  Assumption A5 
•  a solution plan is a linearly ordered finite sequence of 

actions 

  Relaxing A5 
•  why?  

•  to handle dynamic systems (see A3: static Σ) 
•  to create different types of plans 

•  issues: 
• must not shift problem to the controller 
•  reasoning about (more complex) data structures 



Automated Planning: Introduction and Overview 20 

A6: Implicit Time 

  Assumption A6 
•  actions and events have no duration in state transition 

systems 

  Relaxing A6 
•  why?  

•  to handle action duration, concurrency, and deadlines 
•  issues: 

•  representation of and reasoning about time 
•  controller must wait for effects of actions to occur  



Automated Planning: Introduction and Overview 21 

A7: Offline Planning 

  Assumption A7 
• planner is not concerned with changes of Σ 

while it is planning 
  Relaxing A7 

• why?  
•  to drive a system towards some objectives 

•  issues: 
• check whether the current plan remains valid 
•  if needed, revise current plan or re-plan 



Automated Planning: Introduction and Overview 22 

The Restricted Model 
  restricted model: make assumptions A0-A7 

  Given a planning problem P=(Σ,si,Sg) where 
•  Σ = (S,A,γ) is a state transition system,  
•  si∈S is the initial state, and  
•  Sg ⊂ S is a set of goal states,  

  find a sequence of actions 〈a1,a2,…,ak〉  
•  corresponding to a sequence of state transitions 
〈si,s1,…,sk〉 such that  

•  s1= γ(si,a1), s2= γ(s1,a2),…, sk= γ(sk-1,ak), and sk∈Sg. 



Automated Planning: Introduction and Overview 23 

Overview 

  What is AI Planning? 
  A Conceptual Model for Planning 
  Restricting Assumptions 
! A Running Example: Dock-Worker 

Robots 
 



Automated Planning: Introduction and Overview 24 

The Dock-Worker Robots (DWR) 
Domain 
  aim: have one example to 

illustrate planning procedures 
and techniques 

  informal description: 
•  harbour with several locations 

(docks), docked ships, storage 
areas for containers, and 
parking areas for trucks and 
trains 

•  cranes to load and unload ships 
etc., and robot carts to move 
containers around 



Automated Planning: Introduction and Overview 25 

l1 l2 

DWR Example State 

k1 

ca 

k2 

cb 

cc 

cd 

ce 

cf 

robot 

crane 

location 

pile (p1 and q1) 

container 

pile (p2 and q2, both empty) 

container pallet 

r1 



Automated Planning: Introduction and Overview 26 

Actions in the DWR Domain 
  move robot r from location l to some adjacent 

and unoccupied location l’ 
  take container c with empty crane k from the 

top of pile p, all located at the same location l 
  put down container c held by crane k on top of 

pile p, all located at location l 
  load container c held by crane k onto 

unloaded robot r, all located at location l 
  unload container c with empty crane k from 

loaded robot r, all located at location l 



Automated Planning: Introduction and Overview 27 

s0 

State-Transition Systems: Graph 
Example 

location1 location2 

pallet cont. 

crane s2 

location1 location2 

pallet cont. 

crane 

s1 

location1 location2 

pallet 

cont. 

crane s3 

location1 location2 

pallet 

cont. 

crane s4 

location1 location2 

pallet 

crane 

robot robot 

robot 

robot 

robot 

cont. 

s5 

location1 location2 

pallet 

crane 

robot 
cont. 

take put 

move1 

move2 

move2 

move1 

take put 

load 

unload 

move2 move1 



State-Space Search and 
the STRIPS Planner 

Searching for a Path 
through a Graph of Nodes 
Representing World States 



State-Space Search and the STRIPS Planner 29 

Classical Representations 
  propositional representation 

•  world state is set of propositions 
•  action consists of precondition propositions, 

propositions to be added and removed 
  STRIPS representation 

•  like propositional representation, but first-order literals 
instead of propositions 

  state-variable representation 
•  state is tuple of state variables {x1,…,xn} 
•  action is partial function over states 



State-Space Search and the STRIPS Planner 30 

Overview 

! The STRIPS Representation 
  The Planning Domain Definition Language 

(PDDL) 
  Problem-Solving by Search 
  Heuristic Search 
  Forward State-Space Search 
  Backward State-Space Search 
  The STRIPS Planner 
 



State-Space Search and the STRIPS Planner 31 

STRIPS Planning Domains: 
Restricted State-Transition Systems 

  A restricted state-transition system is a triple 
Σ=(S,A,γ), where: 
•  S={s1,s2,…} is a set of states; 
•  A={a1,a2,…} is a set of actions; 
•  γ:S×A→S is a state transition function. 

  defining STRIPS planning domains: 
•  define STRIPS states 
•  define STRIPS actions 
•  define the state transition function 



State-Space Search and the STRIPS Planner 32 

States in the STRIPS 
Representation 

  Let L be a first-order language with finitely 
many predicate symbols, finitely many 
constant symbols, and no function symbols. 

  A state in a STRIPS planning domain is a set 
of ground atoms of L. 
•  (ground) atom p holds in state s iff p∈s 
•  s satisfies a set of (ground) literals g (denoted s ⊧ g) if: 

• every positive literal in g is in s and 
• every negative literal in g is not in s. 



State-Space Search and the STRIPS Planner 33 

DWR Example: STRIPS States 
state = {attached(p1,loc1), 

attached(p2,loc1), in(c1,p1), 
in(c3,p1), top(c3,p1),  
on(c3,c1), on(c1,pallet),  
in(c2,p2),  
top(c2,p2), on(c2,pallet),  
belong(crane1,loc1),  
empty(crane1),  
adjacent(loc1,loc2),  
adjacent(loc2, loc1),  
at(r1,loc2), occupied(loc2), 
unloaded(r1)} 

loc1 

loc2 

pallet 

crane1 

r1 

pallet 

c2 

c1 

p2 

p1 

c3 



State-Space Search and the STRIPS Planner 34 

Fluent Relations 

  Predicates that represent relations, the 
truth value of which can change from 
state to state, are called a fluent or 
flexible relations. 
• example: at 

  A state-invariant predicate is called a 
rigid relation. 
• example: adjacent 



State-Space Search and the STRIPS Planner 35 

Operators and Actions in 
STRIPS Planning Domains 
  A planning operator in a STRIPS planning 

domain is a triple  
o = (name(o), precond(o), effects(o)) where: 
•  the name of the operator name(o) is a syntactic 

expression of the form n(x1,…,xk) where n is a 
(unique) symbol and x1,…,xk are all the variables that 
appear in o, and 

•  the preconditions precond(o) and the effects effects(o) 
of the operator are sets of literals. 

  An action in a STRIPS planning domain is a 
ground instance of a planning operator. 



State-Space Search and the STRIPS Planner 36 

DWR Example: STRIPS 
Operators 
  move(r,l,m) 

•  precond: adjacent(l,m), at(r,l), ¬occupied(m) 
•  effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l) 

  load(k,l,c,r) 
•  precond: belong(k,l), holding(k,c), at(r,l), unloaded(r) 
•  effects: empty(k), ¬holding(k,c), loaded(r,c), ¬unloaded(r) 

  put(k,l,c,d,p) 
•  precond: belong(k,l), attached(p,l), holding(k,c), top(d,p) 
•  effects: ¬holding(k,c), empty(k), in(c,p), top(c,p), on(c,d), 
¬top(d,p) 



State-Space Search and the STRIPS Planner 37 

Applicability and State 
Transitions 
  Let L be a set of literals.  

•  L+ is the set of atoms that are positive literals in L and  
•  L- is the set of all atoms whose negations are in L. 

  Let a be an action and s a state. Then a is 
applicable in s iff: 
•  precond+(a) ⊆ s; and 
•  precond-(a) ⋂ s = {}. 

  The state transition function γ for an applicable 
action a in state s is defined as: 
•  γ(s,a) = (s ‒ effects-(a)) ∪ effects+(a) 



State-Space Search and the STRIPS Planner 38 

STRIPS Planning Domains 

  Let L be a function-free first-order language. A 
STRIPS planning domain on L is a restricted 
state-transition system Σ=(S,A,γ) such that: 
•  S is a set of STRIPS states, i.e. sets of ground atoms 
•  A is a set of ground instances of some STRIPS 

planning operators O 
•  γ:S×A→S where  

•  γ(s,a)=(s - effects-(a)) ∪ effects+(a) if a is applicable in s 
•  γ(s,a)=undefined otherwise 

•  S is closed under γ 



State-Space Search and the STRIPS Planner 39 

STRIPS Planning Problems 

  A STRIPS planning problem is a triple 
P=(Σ,si,g) where: 
• Σ=(S,A,γ) is a STRIPS planning domain on 

some first-order language L 
• si∈S is the initial state 
• g is a set of ground literals describing the  

goal such that the set of goal states is: Sg=
{s∈S | s satisfies g}  



State-Space Search and the STRIPS Planner 40 

DWR Example: STRIPS Planning 
Problem 
  Σ: STRIPS planning domain for DWR domain 
  si: any state 

•  example: s0 = {attached(pile,loc1),  
in(cont,pile), top(cont,pile),  
on(cont,pallet), belong(crane,loc1),  
empty(crane), adjacent(loc1,loc2), adjacent
(loc2,loc1), at(robot,loc2),  
occupied(loc2), unloaded(robot)} 

  g: any subset of L 
•  example: g = {¬unloaded(robot),  

at(robot,loc2)}, i.e. Sg={s5} 

s0 

loc1 loc2 

pallet cont. 

crane 

robot 

s5 

location1 location2 

pallet 

crane 

robot 
cont. 



State-Space Search and the STRIPS Planner 41 

Statement of a STRIPS Planning 
Problem 

  A statement of a STRIPS planning 
problem is a triple P=(O,si,g) where: 
• O is a set of planning operators in an 

appropriate STRIPS planning domain Σ=
(S,A,γ) on L 

• si is the initial state in an appropriate STRIPS 
planning problem P=(Σ,si,g) 

• g is a goal (set of ground literals) in the same 
STRIPS planning problem P 



State-Space Search and the STRIPS Planner 42 

Classical Plans 

  A plan is any sequence of actions π=〈a1,
…,ak〉, where k≥0. 
•  The length of plan π is ¦π|=k, the number of actions. 
•  If π1=〈a1,…,ak〉 and π2=〈a’1,…,a’j〉 are plans, 
then their concatenation is the plan π1∙π2= 〈a1,
…,ak,a’1,…,a’j〉. 
•  The extended state transition function for plans is 
defined as follows: 
•  γ(s,π)=s  if k=0 (π is empty) 
•  γ(s,π)=γ(γ(s,a1),〈a2,…,ak〉)  if k>0 and a1 applicable in 
s 

•  γ(s,π)=undefined  otherwise 



State-Space Search and the STRIPS Planner 43 

Classical Solutions 

  Let P=(Σ,si,g) be a planning problem. A 
plan π is a solution for P if γ(si,π) 
satisfies g. 
• A solution π is redundant if there is a proper 
subsequence of π is also a solution for P. 
• π is minimal if no other solution for P contains 
fewer actions than π. 



State-Space Search and the STRIPS Planner 44 

DWR Example: Solution Plan 

  plan π1 =  
• 〈 move(robot,loc2,loc1),  
•  take(crane,loc1,cont,pallet,pile),  
•  load(crane,loc1,cont,robot),  
• move(robot,loc1,loc2) 〉 

  ¦π1|=4 
  π1 is a minimal, non-redundant solution 



State-Space Search and the STRIPS Planner 45 

Overview 

  The STRIPS Representation 
! The Planning Domain Definition Language 

(PDDL) 
  Problem-Solving by Search 
  Heuristic Search 
  Forward State-Space Search 
  Backward State-Space Search 
  The STRIPS Planner 



State-Space Search and the STRIPS Planner 46 

Overview 

  The STRIPS Representation 
  The Planning Domain Definition Language 

(PDDL) 
! Problem-Solving by Search 
  Heuristic Search 
  Forward State-Space Search 
  Backward State-Space Search 
  The STRIPS Planner 



State-Space Search and the STRIPS Planner 47 

Search Problems 
  initial state 
  set of possible actions/applicability conditions 

•  successor function: state  set of <action, state> 
•  successor function + initial state = state space 
•  path (solution) 

  goal 
•  goal state or goal test function 

  path cost function 
•  for optimality 
•  assumption: path cost = sum of step costs 



State-Space Search and the STRIPS Planner 48 

Missionaries and Cannibals: 
Initial State and Actions 

  initial state: 
•  all missionaries, all 

cannibals, and the 
boat are on the left 
bank 

  5 possible actions: 
•  one missionary crossing 
•  one cannibal crossing 
•  two missionaries 

crossing 
•  two cannibals crossing 
•  one missionary and one 

cannibal crossing 



State-Space Search and the STRIPS Planner 49 

Missionaries and Cannibals: 
Successor Function 

state set of <action, state> 
(L:3m,3c,b-R:0m,0c)  {<2c, (L:3m,1c-R:0m,2c,b)>,  

<1m1c, (L:2m,2c-R:1m,1c,b)>,  
<1c, (L:3m,2c-R:0m,1c,b)>} 

(L:3m,1c-R:0m,2c,b)  {<2c, (L:3m,3c,b-R:0m,0c)>,  
<1c, (L:3m,2c,b-R:0m,1c)>} 

(L:2m,2c-R:1m,1c,b)  {<1m1c, (L:3m,3c,b-R:0m,0c)>,  
<1m, (L:3m,2c,b-R:0m,1c)>} 



State-Space Search and the STRIPS Planner 50 

Missionaries and Cannibals: 
State Space 

1c 

1m 
1c 

2c 
1c 

2c 

1c 

2m 

1m 
1c 

1m 
1c 

1c 

2c 

1m 

2m 

1c 

2c 

1c 

1m 



State-Space Search and the STRIPS Planner 51 

Missionaries and Cannibals: 
Goal State and Path Cost 

  goal state: 
•  all missionaries, all 

cannibals, and the 
boat are on the right 
bank 

  path cost 
•  step cost: 1 for each 

crossing 
•  path cost: number of 

crossings = length of 
path 

  solution path: 
•  4 optimal solutions 
•  cost: 11 



State-Space Search and the STRIPS Planner 52 

Real-World Problem: 
Touring in Romania 

Oradea 

Bucharest 

Fagaras 

Pitesti 

Neamt 

Iasi 

Vaslui 

Urziceni 
Hirsova 

Eforie 

Giurgiu 
Craiova 

Rimnicu Vilcea 

Sibiu 

Dobreta 

Mehadia 

Lugoj 

Timisoara 

Arad 

Zerind 

120 

140 

151 

75 

70 

111 

118 

75 

71 

85 

90 

211 

101 

97 

138 

146 

80 
99 

87 

92 

142 

98 

86 



State-Space Search and the STRIPS Planner 53 

Touring Romania: 
Search Problem Definition 

  initial state: 
•  In(Arad) 

  possible Actions: 
•  DriveTo(Zerind), DriveTo(Sibiu), DriveTo(Timisoara), 

etc. 

  goal state: 
•  In(Bucharest) 

  step cost: 
•  distances between cities 



State-Space Search and the STRIPS Planner 54 

Search Trees 
  search tree: tree structure defined by initial 

state and successor function 
  Touring Romania (partial search tree): 

In(Arad) 

In(Zerind) In(Sibiu) In(Timisoara) 

In(Arad) In(Oradea) In(Fagaras) In(Rimnicu Vilcea) 

In(Sibiu) In(Bucharest) 



State-Space Search and the STRIPS Planner 55 

Search Nodes 

  search nodes: the nodes in the search tree 
  data structure: 

•  state: a state in the state space 
•  parent node: the immediate predecessor in the search 

tree 
•  action: the action that, performed in the parent node’s 

state, leads to this node’s state 
•  path cost: the total cost of the path leading to this node 
•  depth: the depth of this node in the search tree 



State-Space Search and the STRIPS Planner 56 

Fringe Nodes 
in Touring Romania Example 

fringe nodes: nodes that have not been 
expanded 

In(Arad) 

In(Zerind) In(Sibiu) In(Timisoara) 

In(Arad) In(Oradea) In(Fagaras) In(Rimnicu Vilcea) 

In(Sibiu) In(Bucharest) 



State-Space Search and the STRIPS Planner 57 

Search (Control) Strategy 

  search or control strategy: an effective 
method for scheduling the application of the 
successor function to expand nodes 
•  selects the next node to be expanded from the fringe 
•  determines the order in which nodes are expanded 
•  aim: produce a goal state as quickly as possible 

  examples:  
•  LIFO/FIFO-queue for fringe nodes 
•  alphabetical ordering 



State-Space Search and the STRIPS Planner 58 

General Tree Search Algorithm 
function treeSearch(problem, strategy) 

 fringe  { new 
   searchNode(problem.initialState) } 
 loop 
  if empty(fringe) then return failure 
  node  selectFrom(fringe, strategy) 
  if problem.goalTest(node.state) then  
   return pathTo(node) 
  fringe  fringe + expand(problem, node)  



State-Space Search and the STRIPS Planner 59 

In(Arad) In(Oradea) In(Rimnicu Vilcea) 

In(Zerind) In(Timisoara) 

In(Sibiu) In(Bucharest) 

In(Fagaras) 

In(Sibiu) 

General Search Algorithm: 
Touring Romania Example 

In(Arad) 

fringe 

selected 



State-Space Search and the STRIPS Planner 60 

Uninformed vs. Informed Search 

  uninformed search (blind search) 
• no additional information about states beyond 

problem definition 
• only goal states and non-goal states can be 

distinguished 

  informed search (heuristic search) 
• additional information about how “promising” 

a state is available 



State-Space Search and the STRIPS Planner 61 

de
pt

h 
= 

3 

Breadth-First Search: 
Missionaries and Cannibals 

de
pt

h 
= 

0 
de

pt
h 

= 
1 

de
pt

h 
= 

2 



State-Space Search and the STRIPS Planner 62 

de
pt

h 
= 

3 

Depth-First Search: 
Missionaries and Cannibals 

de
pt

h 
= 

0 
de

pt
h 

= 
1 

de
pt

h 
= 

2 



State-Space Search and the STRIPS Planner 63 

Iterative Deepening Search 

  strategy: 
• based on depth-limited (depth-first) search 
•  repeat search with gradually increasing depth 

limit until a goal state is found 

  implementation: 
for depth  0 to ∞ do 

 result  depthLimitedSearch(problem, depth) 
 if result  ≠ cutoff then return result 



State-Space Search and the STRIPS Planner 64 

Discovering Repeated States: 
Potential Savings 

  sometimes repeated states are unavoidable, 
resulting in infinite search trees 

  checking for repeated states: 
•  infinite search tree ⇒ finite search tree 
•  finite search tree ⇒ exponential reduction 

st
at

e 
sp

ac
e 

gr
ap

h 

se
ar

ch
 tr

ee
 

st
at

e 
sp

ac
e 

gr
ap

h 



State-Space Search and the STRIPS Planner 65 

Overview 

  The STRIPS Representation 
  The Planning Domain Definition Language 

(PDDL) 
  Problem-Solving by Search 
! Heuristic Search 
  Forward State-Space Search 
  Backward State-Space Search 
  The STRIPS Planner 



State-Space Search and the STRIPS Planner 66 

Uniform-Cost Search 
  an instance of the general tree search or 

graph search algorithm 
• strategy: select next node based on an 

evaluation function f: state space → ℝ 
• select node with lowest value f(n) 

  implementation:  
selectFrom(fringe, strategy) 
• priority queue: maintains fringe in ascending 

order of f-values 



State-Space Search and the STRIPS Planner 67 

Heuristic Functions 

  heuristic function h: state space → ℝ 
  h(n) = estimated cost of the cheapest 
path from node n to a goal node 

  if n is a goal node then h(n) must be 0 
  heuristic function encodes problem-
specific knowledge in a problem-
independent way 



State-Space Search and the STRIPS Planner 68 

Greedy Best-First Search 

  use heuristic function as evaluation 
function: f(n) = h(n) 
• always expands the node that is closest to the 

goal node 
• eats the largest chunk out of the remaining 

distance, hence, “greedy” 



State-Space Search and the STRIPS Planner 69 

Touring in Romania: Heuristic 

  hSLD(n) = straight-line distance to Bucharest 

Arad 366 Hirsova 151 Rimnicu 
Vilcea 

193 
Bucharest 0 Iasi 226 
Craiova 160 Lugoj 244 Sibiu 253 
Dobreta 242 Mehadia 241 Timisoara 329 
Eforie 161 Neamt 234 Urziceni 80 
Fagaras 176 Oradea 380 Vaslui 199 
Giurgiu 77 Pitesti 100 Zerind 374 



State-Space Search and the STRIPS Planner 70 

Greediness 

  greediness is susceptible to false starts 

  repeated states may lead to infinite oscillation 

initial state 
goal state 



State-Space Search and the STRIPS Planner 71 

A* Search 

  Uniform-cost search where 
 f(n) = h(n) + g(n) 

• h(n) the heuristic function (as before) 
• g(n) the cost to reach the node n 

  evaluation function:  
 f(n) = estimated cost of the cheapest 

  solution through n 
  A* search is optimal if h(n) is admissible 



State-Space Search and the STRIPS Planner 72 

Admissible Heuristics 

A heuristic h(n) is admissible if it never 
overestimates the distance from n to the nearest 
goal node. 

  example: hSLD 
  A* search: If h(n) is admissible then f(n) never 

overestimates the true cost of a solution 
through n. 



State-Space Search and the STRIPS Planner 73 

d 
= 

3 

A* Search: 
Touring Romania 

Arad 
(646) 

Rimnicu Vilcea 
(413) 

Fagaras 
(415) 

Oradea 
(671) 

Zerind 
(449) 

Sibiu 
(393) 

Timisoara 
(447) 

Arad 
(366) d 

= 
0 

d 
= 

2 
d 

= 
1 

d 
= 

4 

fringe 

selected 

Sibiu 
(591) 

Bucharest 
(450) 

Craiova 
(526) 

Pitesti 
(417) 

Sibiu 
(553) 

Bucharest 
(418) 

Craiova 
(615) 

Rimnicu Vilcea 
(607) 



State-Space Search and the STRIPS Planner 74 

Optimality of A* (Tree Search) 

Theorem: 
A* using tree search is optimal if the 
heuristic h(n) is admissible. 



State-Space Search and the STRIPS Planner 75 

A*: Optimally Efficient 

  A* is optimally efficient for a given 
heuristic function: 
no other optimal algorithm is guaranteed 
to expand fewer nodes than A*. 

  any algorithm that does not expand all 
nodes with f(n) < C* runs the risk of 
missing the optimal solution 



State-Space Search and the STRIPS Planner 76 

A* and Exponential Space 

  A* has worst case time and space 
complexity of O(bl) 

  exponential growth of the fringe is 
normal 
• exponential time complexity may be 

acceptable 
• exponential space complexity will exhaust any 

computer’s resources all too quickly 



State-Space Search and the STRIPS Planner 77 

Overview 

  The STRIPS Representation 
  The Planning Domain Definition Language 

(PDDL) 
  Problem-Solving by Search 
  Heuristic Search 
! Forward State-Space Search 
  Backward State-Space Search 
  The STRIPS Planner 



State-Space Search and the STRIPS Planner 78 

State-Space Search 

  idea: apply standard search algorithms 
(breadth-first, depth-first, A*, etc.) to 
planning problem: 
• search space is subset of state space 
• nodes correspond to world states 
• arcs correspond to state transitions 
• path in the search space corresponds to plan 



State-Space Search and the STRIPS Planner 79 

s0 

DWR Example: State Space 

location1 location2 

pallet cont. 

crane s2 

location1 location2 

pallet cont. 

crane 

s1 

location1 location2 

pallet 

cont. 

crane s3 

location1 location2 

pallet 

cont. 

crane s4 

location1 location2 

pallet 

crane 

robot robot 

robot 

robot 

robot 

cont. 

s5 

location1 location2 

pallet 

crane 

robot 
cont. 



State-Space Search and the STRIPS Planner 80 

Search Problems 
  initial state 
  set of possible actions/applicability conditions 

•  successor function: state  set of <action, state> 
•  successor function + initial state = state space 
•  path (solution) 

  goal 
•  goal state or goal test function 

  path cost function 
•  for optimality 
•  assumption: path cost = sum of step costs 



State-Space Search and the STRIPS Planner 81 

State-Space Planning as a 
Search Problem 

  given: statement of a planning problem 
P=(O,si,g)  

  define the search problem as follows: 
•  initial state: si 
• goal test for state s: s satisfies g 
• path cost function for plan π: ¦π| 
• successor function for state s: Γ(s) 



State-Space Search and the STRIPS Planner 82 

Reachable Successor States 

  The successor function Γm:2S→2S for a 
STRIPS domain Σ=(S,A,γ) is defined as: 
•  Γ(s)={γ(s,a) ¦ a∈A and a applicable in s}  for s∈S 
•  Γ({s1,…,sn})= ∪(k∈[1,n])Γ(sk)  
•  Γ0({s1,…,sn})= {s1,…,sn}  s1,…,sn∈S 
•  Γm({s1,…,sn})= Γ(Γm-1({s1,…,sn})) 

  The transitive closure of Γ defines the set of all 
reachable states: 
•  Γ>(s)= ∪(k∈[0,∞])Γk({s})  for s∈S 



State-Space Search and the STRIPS Planner 83 

Solution Existence 

  Proposition: A STRIPS planning 
problem P=(Σ,si,g) (and a statement of 
such a problem P=(O,si,g) ) has a 
solution iff Sg ⋂ Γ>({si}) ≠ {}. 



State-Space Search and the STRIPS Planner 84 

Forward State-Space Search 
Algorithm 
function fwdSearch(O,si,g) 

 state  si 
 plan  〈〉 
 loop 
  if state.satisfies(g) then return plan 
  applicables   
   {ground instances from O applicable in state} 
  if applicables.isEmpty() then return failure 
  action  applicables.chooseOne() 
  state  γ(state,action) 
  plan  plan ∙ 〈action〉 



State-Space Search and the STRIPS Planner 85 

DWR Example: Forward Search 

s1 

loc1 loc2 

pallet 

cont. 

crane 

robot 

s3 

loc1 loc2 

pallet 

cont. 

crane 

robot 

s0 

loc1 loc2 

pallet cont. 

crane 

robot 

s4 

loc1 loc2 

pallet 

crane 

robot 
cont. 

s5 

loc1 loc2 

pallet 

crane 

robot 
cont. 

plan =  

move(robot,loc2,loc1) 

initial state: goal state: 

load(crane,loc1,cont,robot) 

take(crane,loc1,cont,pallet,pile) 

move(robot,loc1,loc2) 



State-Space Search and the STRIPS Planner 86 

Finding Applicable Actions: 
Algorithm 
function addApplicables(A, op, precs, σ, s) 

 if precs+.isEmpty() then 
   for every np in precs- do 
   if s.falsifies(σ(np)) then return 
  A.add(σ(op)) 
 else 
  pp  precs+.chooseOne() 
  for every sp in s do 
   σ’  σ.extend(sp, pp) 
   if σ’.isValid() then 
     addApplicables(A, op, (precs - pp), σ’, s) 



State-Space Search and the STRIPS Planner 87 

Properties of Forward Search 
  Proposition: fwdSearch is sound, i.e. if the function 

returns a plan as a solution then this plan is indeed a 
solution. 
•  proof idea: show (by induction) state=γ(si,plan) at the 

beginning of each iteration of the loop 

  Proposition: fwdSearch is complete, i.e. if there exists 
solution plan then there is an execution trace of the 
function that will return this solution plan. 
•  proof idea: show (by induction) there is an execution trace 

for which plan is a prefix of the sought plan 



State-Space Search and the STRIPS Planner 88 

Making Forward Search 
Deterministic 
  idea: use depth-first search 

•  problem: infinite branches 
•  solution: prune repeated states 

  pruning: cutting off search below certain 
nodes 
•  safe pruning: guaranteed not to prune every solution 
•  strongly safe pruning: guaranteed not to prune every 

optimal solution 
•  example: prune below nodes that have a 

predecessor that is an equal state (no repeated 
states) 



State-Space Search and the STRIPS Planner 89 

Overview 

  The STRIPS Representation 
  The Planning Domain Definition Language 

(PDDL) 
  Problem-Solving by Search 
  Heuristic Search 
  Forward State-Space Search 
! Backward State-Space Search 
  The STRIPS Planner 



State-Space Search and the STRIPS Planner 90 

The Problem with Forward 
Search 

  number of actions applicable in any 
given state is usually very large 

  branching factor is very large 
  forward search for plans with more than 

a few steps not feasible 

  idea: search backwards from the goal 
  problem: many goal states 



State-Space Search and the STRIPS Planner 91 

Relevance and Regression Sets 

  Let P=(Σ,si,g) be a STRIPS planning 
problem. An action a∈A is relevant for g 
if  
• g ⋂ effects(a) ≠ {} and  
• g+ ⋂ effects-(a) = {} and g- ⋂ effects+(a) = {}.  

  The regression set of g for a relevant 
action a∈A is: 
• γ -1(g,a)=(g - effects(a)) ∪ precond(a) 



State-Space Search and the STRIPS Planner 92 

Regression Function 

  The regression function Γ-m for a STRIPS 
domain Σ=(S,A,γ) on L is defined as: 
•  Γ-1(g)={γ -1(g,a) | a∈A is relevant for g}  for g∈2L 
•  Γ0({g1,…,gn})= {g1,…,gn}  

•  Γ-1({g1,…,gn})= ∪(k∈[1,n])Γ-1(gk)  g1,…,gn∈2L 
•  Γ-m({g1,…,gn})= Γ-1(Γ-(m-1)({g1,…,gn})) 

  The transitive closure of Γ-1 defines the set of 
all regression sets: 
•  Γ<(g)= ∪(k∈[0,∞])Γ-k({g})  for g∈2L 



State-Space Search and the STRIPS Planner 93 

State-Space Planning as a 
Search Problem 

  given: statement of a planning problem 
P=(O,si,g)  

  define the search problem as follows: 
•  initial search state: g 
• goal test for state s: si satisfies s 
• path cost function for plan π: ¦π| 
• successor function for state s: Γ-1(s) 



State-Space Search and the STRIPS Planner 94 

Solution Existence 

  Proposition: A propositional planning 
problem P=(Σ,si,g) (and a statement of 
such a problem P=(O,si,g) ) has a 
solution iff ∃s∈Γ<({g}) : si satisfies s. 



State-Space Search and the STRIPS Planner 95 

Ground Backward State-Space 
Search Algorithm 
function groundBwdSearch(O,si,g) 

 subgoal  g 
 plan  〈〉 
 loop 
  if si.satisfies(subgoal) then return plan 
  applicables   
   {ground instances from O relevant for subgoal} 
  if applicables.isEmpty() then return failure 
  action  applicables.chooseOne() 
  subgoal  γ -1(subgoal, action) 
  plan  〈action〉 ∙ plan 



State-Space Search and the STRIPS Planner 96 

DWR Example: Backward 
Search 

s1 

loc1 loc2 

pallet 

cont. 

crane 

robot 

s3 

loc1 loc2 

pallet 

cont. 

crane 

robot 

s0 

loc1 loc2 

pallet cont. 

crane 

robot 

s4 

loc1 loc2 

pallet 

crane 

robot 
cont. 

s5 

loc1 loc2 

pallet 

crane 

robot 
cont. 

plan =  

move(robot,loc2,loc1) 

initial state: goal state: 

load(crane,loc1,cont,robot) 

take(crane,loc1,cont,pallet,pile) 

move(robot,loc1,loc2) 



State-Space Search and the STRIPS Planner 97 

Example: Regression with 
Operators 
  goal: at(robot,loc1) 
  operator: move(r,l,m) 

•  precond: adjacent(l,m), at(r,l), ¬occupied(m) 
•  effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l) 

  actions: move(robot,l,loc1) 
•  l=? 
•  many options increase branching factor 

  lifted backward search: use partially 
instantiated operators instead of actions 



State-Space Search and the STRIPS Planner 98 

Lifted Backward State-Space 
Search Algorithm 
function liftedBwdSearch(O,si,g) 

 subgoal  g 
 plan  〈〉 
 loop 
  if ∃σ:si.satisfies(σ(subgoal)) then return σ(plan) 
  applicables   
   {(o,σ) | o∈O and σ(o) relevant for subgoal} 
  if applicables.isEmpty() then return failure 
  action  applicables.chooseOne() 
  subgoal  γ -1(σ(subgoal), σ(o)) 
  plan  σ(〈action〉) ∙ σ(plan) 



State-Space Search and the STRIPS Planner 99 

DWR Example: Lifted Backward 
Search 

  initial state: s0 = {attached(pile,loc1),  
in(cont,pile), top(cont,pile),  
on(cont,pallet), belong(crane,loc1),  
empty(crane), adjacent(loc1,loc2), 
adjacent(loc2,loc1), at(robot,loc2),  
occupied(loc2), unloaded(robot)} 

  operator:move(r,l,m) 
•  precond: adjacent(l,m), at(r,l), ¬occupied

(m) 
•  effects: at(r,m), occupied(m), ¬occupied

(l), ¬at(r,l) 

  liftedBwdSearch( 
{move(r,l,m)}, s0, {at(robot,loc1)} ) 

  ∃σ:si.satisfies(σ(subgoal)): no 
  applicables = 

{(move(r1,l1,m1),{r1←robot, 
m1←loc1})} 

  subgoal =  
{adjacent(l1,loc1), at(robot,l1), 
¬occupied(loc1)} 

  plan = 〈move(robot,l1,loc1)〉 

  ∃σ:si.satisfies(σ(subgoal)): yes 
 σ = {l1←loc1} 

s0 

loc1 loc2 

pallet cont. 

crane 

robot 



State-Space Search and the STRIPS Planner 100 

Properties of Backward Search 
  Proposition: liftedBwdSearch is sound, i.e. if the function 

returns a plan as a solution then this plan is indeed a 
solution. 
•  proof idea: show (by induction) subgaol=γ -1(g,plan) at the 

beginning of each iteration of the loop 

  Proposition: liftedBwdSearch is complete, i.e. if there 
exists solution plan then there is an execution trace of the 
function that will return this solution plan. 
•  proof idea: show (by induction) there is an execution trace 

for which plan is a suffix of the sought plan 



State-Space Search and the STRIPS Planner 101 

Avoiding Repeated States 

  search space:  
•  let gi and gk be sub-goals where gi is an 

ancestor of gk in the search tree 
•  let σ be a substitution such that σ(gi) ⊆ gk  

  pruning: 
•  then we can prune all nodes below gk 



State-Space Search and the STRIPS Planner 102 

Overview 

  The STRIPS Representation 
  The Planning Domain Definition Language 

(PDDL) 
  Problem-Solving by Search 
  Heuristic Search 
  Forward State-Space Search 
  Backward State-Space Search 
! The STRIPS Planner 



State-Space Search and the STRIPS Planner 103 

Problems with Backward Search 

  state space still too large to search 
efficiently 

  STRIPS idea: 
• only work on preconditions of the last operator 

added to the plan 
•  if the current state satisfies all of an 

operator’s preconditions, commit to this 
operator 



State-Space Search and the STRIPS Planner 104 

Ground-STRIPS Algorithm 
function groundStrips(O,s,g) 

 plan  〈〉 
 loop 
  if s.satisfies(g) then return plan 
  applicables   
   {ground instances from O relevant for g-s} 
  if applicables.isEmpty() then return failure 
  action  applicables.chooseOne() 
  subplan  groundStrips(O,s,action.preconditions()) 
  if subplan = failure then return failure 
  s  γ(s, subplan ∙ 〈action〉) 
  plan  plan ∙ subplan ∙ 〈action〉 



State-Space Search and the STRIPS Planner 105 

Problems with STRIPS 

  STRIPS is incomplete: 
•  cannot find solution for some problems, e.g. 

interchanging the values of two variables 
•  cannot find optimal solution for others, e.g. Sussman 

anomaly: 

Table 

A B 

C 

Table 

A 

B 

C 



State-Space Search and the STRIPS Planner 106 

STRIPS and the Sussman 
Anomaly (1) 

  achieve on(A,B) 
• put C from A onto table 
• put A onto B 

  achieve on(B,C) 
• put A from B onto table 
• put B onto C 

  re-achieve on(A,B) 
• put A onto B 

A B 
C A 

B C 

A 
B C A 

B 
C 

A 
B 
C 

A 
B 
C 



State-Space Search and the STRIPS Planner 107 

STRIPS and the Sussman 
Anomaly (2) 
  achieve on(B,C) 

•  put B onto C 
  achieve on(A,B) 

•  put B from C onto table 
•  put C from A onto table 
•  put A onto B 

  re-achieve on(B,C) 
•  put A from B onto table 
•  put B onto C 

  re-achieve on(A,B) 
•  put A onto B 

A B 
C 

A 

B 
C 

A 

B 
C A 

B C 

A 
B C A 

B 
C 

A 
B 
C 

A 
B 
C 



State-Space Search and the STRIPS Planner 108 

Interleaving Plans for an 
Optimal Solution 

  shortest solution 
achieving on(A,B): 

  shortest solution 
achieving on(B,C): 

  shortest solution for 
on(A,B) and on(B,C): 

put C from A onto table 

put B onto C 

put A onto B 

put C from A onto table 

put B onto C 

put A onto B 



State-Space Search and the STRIPS Planner 109 

Overview 

  The STRIPS Representation 
  The Planning Domain Definition Language 

(PDDL) 
  Problem-Solving by Search 
  Heuristic Search 
  Forward State-Space Search 
  Backward State-Space Search 
! The STRIPS Planner 


