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Defining Al Planning

e planning:

® explicit deliberation process that chooses and
organizes actions by anticipating their
outcomes

® aims at achieving some pre-stated objectives

e Al planning:

® computational study of this deliberation
process
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Why Study Planning in Al?

e scientific goal of Al:
understand intelligence

® planning is an important component of
rational (intelligent) behaviour

e engineering goal of Al:
build intelligent entities

® build planning software for choosing
and organizing actions for autonomous
intelligent machines
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Domain-Specific vs.
Domain-independent Planning

e domain-specific planning: use specific
representations and techniques adapted to each
problem

® important domains: path and motion planning, perception
planning, manipulation planning, communication planning

e domain-independent planning: use generic
representations and techniques

® exploit commonalities to all forms of planning
® leads to general understanding of planning

e domain-independent planning complements
domain-specific planning
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Why a Conceptual Model?

e conceptual model: theoretical device for
describing the elements of a problem

e good for:

® explaining basic concepts

¢ clarifying assumptions

® analyzing requirements

® proving semantic properties
e not good for:

¢ efficient algorithms and computational concerns
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Conceptual Model for Planning:
State-Transition Systems

e A state-transition system is a 4-tuple
2= (S,AEy), where:

® §={s5,,..} is afinite or recursively enumerable set of
states;

® A={a,a,,..} is a finite or recursively enumerable set
of actions;

® E={ee,,..} Is afinite or recursively enumerable set
of events; and

® y: Sx(AUE)—25 is a state transition function.
o if a€A and y(s,a) = J then a is applicable in s
e applying a in s will take the system to s'€y(s,a)
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State-Transition Systems as
Graphs

e A state-transition system X =(S,A.E,y)
can be represented by a directed
labelled graph G = (N,.E;) where:

® the nodes correspond to the states in §, i.e.
N:=S; and

® there is an arc from sEN_ to s'EN, i.e. s—s
'€E, with label uc(AUE) if and only if s'&y

(s,a).
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State-Transition Graph Example:
Missionaries and Cannibals

N W
043
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Objectives and Plans

e state-transition system:
® describes all ways in which a system may evolve

e plan:

® a structure that gives appropriate actions to apply in
order to achieve some objective when starting from a
given state

e types of objective:
® goal state s, or set of goal states S,
¢ satisfy some conditions over the sequence of states

® optimize utility function attached to states
® task to be performed
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Planning and Plan Execution

Description of 2 ° plan.ner: o o
| ® given: description of %, initial
Initial State state, objective
Y Planner o : :
L T generate: plan that achieves
Objectives objective
Plan
v e controller:
Controller ® given: plan, current state
3 (observation function: #:5S—0)
Observations "Actions * generate: action
System = e state-transition system:
® evolves as actions are executed
I and events occur
Events
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AO: Finite >
e Assumption AQ

® system X has a finite set of states

e Relaxing AO
® why?

® to describe actions that construct or bring new
objects into the world

® to handle numerical state variables

® issues:
® decidability and termination of planners
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A1: Fully Observable >

e Assumption A1

* system X is fully observable, i.e.  is the identity
function

e Relaxing A1
® why?

® to handle states in which not every aspect is or can be
known

® issues:
® if n(s)=0, (o) usually more than one state (ambiguity)
® determining the successor state
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A2: Deterministic >

e Assumption A2

* system 2 is deterministic, i.e. for all s&S, uEAUE: Iy
(s,u)l=<1

® short form: y(s.u)=s" for y(su)={s"}

e Relaxing A2
® why?
® to plan with actions that may have multiple alternative
outcomes
® |ssues:
® controller has to observe actual outcomes of actions

® solution plan may include conditional and iterative
constructs
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A3: Static >
e Assumption A3

® system X is static, i.e. E=
® shortform: X =(S5,A,y) for 2= (5,A,9,y)

e Relaxing A3
® why?
® to model a world in which events can occur

® |ssues:

® world becomes nondeterministic from the point of
view of the planner (same issues)
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A4: Restricted Goals
e Assumption A4

® the planner handles only restricted goals that are
given as an explicit goal state s, or set of goal states §,

e Relaxing A4
® why?
® to handle constraints on states and plans, utility
functions, or tasks
® [ssues:

® representation and reasoning over constraints, utility,
and tasks
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A5: Sequential Plans

e Assumption A5
® a solution plan is a linearly ordered finite sequence of
actions
e Relaxing A5
® why?
® to handle dynamic systems (see A3: static )
® to create different types of plans

® |ssues:

® must not shift problem to the controller
® reasoning about (more complex) data structures
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AG: Implicit Time

e Assumption AG
¢ actions and events have no duration in state transition
systems
e Relaxing AG
® why?
® to handle action duration, concurrency, and deadlines
® issues:

® representation of and reasoning about time
® controller must wait for effects of actions to occur
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A7: Offline Planning
e Assumption A7

® planner is not concerned with changes of X
while it is planning
e Relaxing A7
® why?
® to drive a system towards some objectives

® issues:
® check whether the current plan remains valid
® if needed, revise current plan or re-plan
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The Restricted Model

e restricted model: make assumptions AO-A7

e Given a planning problem 72=(Z,s,,S,) where
® X =(5A,y) is a state transition system,
® s&5 is the initial state, and
® §,CSis aset of goal states,

e find a sequence of actions (a,.a,....,a,)

® corresponding to a sequence of state transitions
<Sl-,S1,...,Sk> such that

® 5= Y(55a1), 5= Y(S1:ap),- -5 8= V(8p14), and s, ES,.
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e A Conceptual Model for Planning
e Restricting Assumptions

» A Running Example: Dock-Worker
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The Dock-Worker Robots (DWR)
Domain

e aim: have one example to
llustrate planning procedures
and techniques

e informal description:

® harbour with several locations
(docks), docked ships, storage
areas for containers, and
parking areas for trucks and
trains

® cranes to load and unload ships
etc., and robot carts to move
containers around
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DWR Example State

+ CcC cf
container s+ cb e --1i container
pile (p1°and g1) robot pile (p2 and g2, both empty)
location
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Actions in the DWR Domain

move robot r from location / to some adjacent
and unoccupied location /

take container ¢ with empty crane k from the
top of pile p, all located at the same location /

put down container ¢ held by crane k on top of
pile p, all located at location /

load container ¢ held by crane k onto
unloaded robot r, all located at location /

unload container ¢ with empty crane k from
loaded robot r, all located at location /

Automated Planning: Introduction and Overview
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State-Transition Systems: Graph
Example
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State-Space Search and
the STRIPS Planner

Searching for a Path
through a Graph of Nodes
Representing World States




Classical Representations

e propositional representation
® world state is set of propositions
® action consists of precondition propositions,
propositions to be added and removed
e STRIPS representation
® like propositional representation, but first-order literals
instead of propositions
e state-variable representation
® state is tuple of state variables {x,,...,x,}
® action is partial function over states

State-Space Search and the STRIPS Planner
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Overview

» The STRIPS Representation

e The Planning Domain Definition Language
(PDDL)

e Problem-Solving by Search
e Heuristic Search
e Forward State-Space Search

e Backward State-Space Search
e The STRIPS Planner

State-Space Search and the STRIPS Planner
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STRIPS Planning Domains:
Restricted State-Transition Systems

e A restricted state-transition system is a triple
2=(S,A,y), where:
* S={s,,S,,...} is a set of states;
* A={a,,a,,...} is a set of actions;
* v:SxA—S is a state transition function.
e defining STRIPS planning domains:
® define STRIPS states

® define STRIPS actions
® define the state transition function

State-Space Search and the STRIPS Planner
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States in the STRIPS
Representation

o Let < be a first-order language with finitely
many predicate symbols, finitely many
constant symbols, and no function symbols.

e A state in a STRIPS planning domain is a set
of ground atoms of 2.
® (ground) atom p holds in state siff pEs

® s satisfies a set of (ground) literals g (denoted s * g) if:

® every positive literal in g is in s and
® every negative literal in g is not in s.

State-Space Search and the STRIPS Planner
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DWR Example: STRIPS States

state = {attached(p1,loc1),
attached(p2,loc1), in(c1,p1),
in(c3,p1), top(c3,p1),

on(c3,c1), on(c1,pallet),
iIn(c2,p2),

top(c2,p2), on(c2,pallet),
belong(crane1,loc1),
empty(crane1),
adjacent(loc1,loc2),

loc2

adjacent(loc2, loc1),

I

at(r1,loc2), occupied(loc2),
unloaded(r1)}
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Fluent Relations

e Predicates that represent relations, the
truth value of which can change from
state to state, are called a fluent or
flexible relations.

® example: at

e A state-invariant predicate is called a
rigid relation.

® example: adjacent

State-Space Search and the STRIPS Planner
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Operators and Actions in
STRIPS Planning Domains

e A planning operator in a STRIPS planning
domain is a triple
o = (name(0), precond(o), effects(o)) where:

® the name of the operator name(0) is a syntactic
expression of the form n(x,,...,x,) where nis a
(unique) symbol and x,,...,x, are all the variables that
appear in o, and

® the preconditions precond(o) and the effects effects(o)
of the operator are sets of literals.
e An action in a STRIPS planning domain is a
ground instance of a planning operator.

State-Space Search and the STRIPS Planner
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DWR Example: STRIPS
Operators

e move(r,,m)
® precond: adjacent(/,m), at(r,/), "occupied(m)
® effects: at(r,m), occupied(m), ~occupied(/), 7at(r,/)

e l|oad(k,lc,r)
® precond: belong(k,/), holding(k,c), at(r,/), unloaded(r)
® effects: empty(k), “holding(k,c), loaded(r,c), ~unloaded(r)

e put(k,/cdp)
® precond: belong(k,/), attached(p,/), holding(k,c), top(d,p)
¢ effects: 7holding(k,c), empty(k), in(c,p), top(c,p), on(c,d),
“top(d,p)
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Applicability and State
Transitions

e Let L be a set of literals.
® L*is the set of atoms that are positive literals in L and
® L-is the set of all atoms whose negations are in L.

e Let a be an action and s a state. Then a is
applicable in s iff:
® precond*(a) € s; and
® precond(a) n s = {}.

e The state transition function y for an applicable
action ain state sis defined as:
®* y(s.a) = (s - effects(a)) U effects*(a)

State-Space Search and the STRIPS Planner
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STRIPS Planning Domains

e Let £ be a function-free first-order language. A
STRIPS planning domain on £ is a restricted
state-transition system 2=(S,A,y) such that:

¢ Sis aset of STRIPS states, i.e. sets of ground atoms

® Ais a set of ground instances of some STRIPS
planning operators O

* v:SxA—S where
® v(s,a)=(s - effects(a)) U effects*(a) if a is applicable in s
® yv(s,a)=undefined otherwise

¢ Sis closed undery
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STRIPS Planning Problems

e A STRIPS planning problem is a triple

2=(Z,S;,g) where:

*2=(S,Ay)isa S
some first-order

'RIPS planning domain on
anguage <

® s,€Sis the initia

state

® gis a set of ground literals describing the
goal such that the set of goal states is: S =
{s€ S | s satisfies g}

State-Space Search and the STRIPS Planner
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DWR Example: STRIPS Planning
Problem

e 2: STRIPS planning domain for DWR domain
e S;: any state
* example: s, = {attached(pile,loc1), crane 5,
iIn(cont,pile), top(cont,pile),
on(cont,pallet), belong(crane,loc1),
empty(crane), adjacent(loc1,loc2), a‘& e

(loc2,loc1), at(robot,loc2),
occupied(loc2), unloaded(robot)}

e g. any subset of L =
* example: g = {~unloaded(robot),
at(robot,loc2)}, i.e. S,;={s:} @

] tionl ] tion2
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Statement of a STRIPS Planning
Problem

e A statement of a STRIPS planning
problem is a triple P=(0O,s;,g) where:

® O s a set of planning operators in an
appropriate STRIPS planning domain 2=
(S,Ay) on £

® s;is the initial state in an appropriate STRIPS
planning problem 2=(Z,s,9)

® gis a goal (set of ground literals) in the same
STRIPS planning problem 2
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Classical Plans

e A plan is any sequence of actions = (a,,
...,a,) , where k0.
®* The length of plan 17 is |7|=k, the number of actions.
* If m= {ay,....ap andm,=<a’y,....a’) areplans,

then their concatenation is the plan mem,= <(a,
...,ak,a’1,...,a’j> .

® The extended state transition function for plans is
defined as follows:

® y(s,m)=s if k=0 (1T is empty)

* v(s,m=y(y(s,a,), a,,...,a,» ) if k>0 and a, applicable in
s

®_v(s,m)=undefined otherwise
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Classical Solutions

o Let 2=(2,s;,9) be a planning problem. A
plan 1T is a solution for 2 if y(s, )
satisfies g.
® A solution rris redundant if there is a proper

subsequence of rris also a solution for 2.

® 7is minimal if no other solution for 2 contains
fewer actions than 1.

State-Space Search and the STRIPS Planner
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DWR Example: Solution Plan

* { move(robot,loc2,loc1),
® take(crane,loc1,cont,pallet,pile),
® load(crane,loc1,cont,robot),
® move(robot,loc1,loc2) )
o 1my|=4
e 17, IS @ minimal, non-redundant solution
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Overview

e The STRIPS Representation

» [he Planning Domain Definition Language
(PDDL)

e Problem-Solving by Search
e Heuristic Search
e Forward State-Space Search

e Backward State-Space Search
e The STRIPS Planner
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Overview

e The STRIPS Representation

e The Planning Domain Definition Language
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Search Problems

e Initial state

e set of possible actions/applicability conditions
® successor function: state - set of <action, state>
® successor function + initial state = state space

® path (solution)
e goal
® goal state or goal test function
e path cost function
¢ for optimality
® assumption: path cost = sum of step costs

State-Space Search and the STRIPS Planner
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Missionaries and Cannibals:
Initial State and Actions

e initial state: e 5 possible actions:
¢ all missionaries, all ® one missionary crossing
cannibals, and the ® one cannibal crossing
boat are on the left o

bank

two missionaries
crossing

® two cannibals crossing

® one missionary and one
cannibal crossing

State-Space Search and the STRIPS Planner
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Missionaries and Cannibals:
Successor Function

State

set of <acftion, state>

(L:3m,3c,b-R:0m,0c) = |{<2c, (L:3m,1c-R:0m,2c,b)>,

<1m1c, (L:2m,2c-R:1m,1¢c,b)>,
<1c, (L:3m,2c-R:0m,1c,b)>}

(L:3m,1c-R:0m,2¢,b) = | {<2c, (L:3m,3c,b-R:0m,0c)>,

<1c, (L:3m,2¢,b-R:0m,1c)>}

(L:2m,2c-R:1m,1¢c,b) =2 | {<1m1c, (L:3m,3c,b-R:0m,0c)>,

<1m, (L:3m,2¢,b-R:0m,1¢)>}
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Missionaries and Cannibals:

State Space

A
-

Oy3

1c

1c

1m
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Missionaries and Cannibals:
Goal State and Path Cost

e goal state: e path cost
¢ all missionaries, all ® step cost: 1 for each
cannibals, and the crossing
boat are on the right ® path cost: number of
bank crossings = length of
path

A
o‘.‘. e solution path:

® 4 optimal solutions
® cost: 11
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Real-World Problem:
Touring in Romania

Oradea
71
Zerind | | Nemt
87
151
75 u lasi
Arad
99
118 80 Vaslui L
Rimnicu Vilcea
— 211
Timisoara 7
Pitesti 142
[ |
111 —
Lugoj 101 8514 98 —Hirsova
70 146 Bucharest Urziceni
86
Mehadia | | 138
90 ™
75 Eforie
Dobreta| | 120 [ | Giurgiu
Craiova
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Touring Romania:
Search Problem Definition

e [nitial state:
® In(Arad)

e possible Actions:

® DriveTo(Zerind), DriveTo(Sibiu), DriveTo(Timisoara),
etc.

e goal state:
® In(Bucharest)

e step cost:
¢ distances between cities

State-Space Search and the STRIPS Planner
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Search Trees

e search tree: tree structure defined by initial
state and successor function

e Touring Romania (partial search tree):

@ In(Oradea) In(Fagaras) @imnicu V"@a
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Search Nodes

e search nodes: the nodes in the search tree

e data structure:

¢ state: a state in the state space

® parent node: the immediate predecessor in the search
tree

® action: the action that, performed in the parent node’ s
state, leads to this node’ s state

® path cost. the total cost of the path leading to this node
® depth: the depth of this node in the search tree
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Fringe Nodes
in Touring Romania Example

fringe nodes: nodes that have not been
expanded

|n(Timiso@
@uchar@
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Search (Control) Strategy

e search or control strateqy: an effective
method for scheduling the application of the
successor function to expand nodes

® selects the next node to be expanded from the fringe
® determines the order in which nodes are expanded
® aim: produce a goal state as quickly as possible

e examples:

® LIFO/FIFO-queue for fringe nodes
¢ alphabetical ordering

State-Space Search and the STRIPS Planner
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General Tree Search Algorithm

function treeSearch(problem, strategy)
fringe < { new
searchNode(problem.initialState) }
loop
if empty(fringe) then return failure
node < selectFrom(fringe, strategy)
if problem.goalTest(node.state) then
return pathTo(node)
fringe < fringe + expand(problem, node)

State-Space Search and the STRIPS Planner 58



General Search Algorithm:
Touring Romania Example

In(Arad)

In(Sibiu) In(Timiso@
@uchar@

In(Oradea)

O fringe
. selected
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Uninformed vs. Informed Search

e uninformed search (blind search)

® no additional information about states beyond
problem definition

® only goal states and non-goal states can be
distinguished
e informed search (heuristic search)

® additional information about how “promising”
a state is available

State-Space Search and the STRIPS Planner
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Breadth-First Search:
Missionaries and Cannibals

=0

2 (|| depth=1 |1|depth

depth

State-Space Search and the STRIPS Planner 61



Depth-First Search:
Missionaries and Cannibals

=0

2 (|| depth=1 |1|depth

depth
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Iterative Deepening Search

e Strategy:.
® based on depth-limited (depth-first) search
® repeat search with gradually increasing depth
limit until a goal state is found
e Implementation:
for depth < 0 to ~ do
result < depthLimitedSearch(problem, depth)
if result # cutoff then return result
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Discovering Repeated States:
Potential Savings

e sometimes repeated states are unavoidable,
resulting in infinite search trees

e checking for repeated states:
® infinite search tree = finite search tree
® finite search tree > exponential reduction

search tree

state space graph
state space graph

State-Space Search and the STRIPS Planner 64



Overview

e The Planning Domain Definition Language

»

The STRIPS Representation

(PDDL)

Problem-Solving by Search
Heuristic Search

Forward State-Space Search

Backward State-Space Search
The STRIPS Planner
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Uniform-Cost Search

e an instance of the general tree search or
graph search algorithm

® strategy: select next node based on an
evaluation function f. state space — R

® select node with lowest value f(n)
e iImplementation:
selectFrom(fringe, strategy)

® priority queue: maintains fringe in ascending
order of f-values

State-Space Search and the STRIPS Planner
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Heuristic Functions

e heuristic function h: state space —» R

e h(n) = estimated cost of the cheapest
path from node nto a goal node

e if nis a goal node then A(n) must be O

e heuristic function encodes problem-
specific knowledge in a problem-
independent way
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Greedy Best-First Search

e use heuristic function as evaluation
function: f(n) = h(n)
® always expands the node that is closest to the
goal node

® eats the largest chunk out of the remaining
distance, hence, “greedy”
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Touring in Romania: Heuristic

e hg p(n) = straight-line distance to Bucharest

Arad 366 | Hirsova 151 | Rimnicu 193
Bucharest 0|lasi 226 | Vilcea

Craiova 160 | Lugoj 244 | Sibiu 253
Dobreta 242 | Mehadia 241 | Timisoara 329
Eforie 161 | Neamt 234 | Urziceni 30
Fagaras 176 | Oradea 380 | Vaslui 199
Giurgiu 77 | Pitesti 100 | Zerind 374
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Greediness

e greediness is susceptible to false starts

e repeated states may lead to infinite oscillation

'gi j Winitial state
> HE goal state
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A* Search

e Uniform-cost search where

f(n) = h(n) + g(n)
® h(n) the heuristic function (as before)
® g(n) the cost to reach the node n

e evaluation function:
f(n) = estimated cost of the cheapest
solution through n

e A* search is optimal if h(n) is admissible

State-Space Search and the STRIPS Planner
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Admissible Heuristics

A heuiristic h(n) is admissible if it never
overestimates the distance from n to the nearest
goal node.

e example: hg

e A* search: If h(n) is admissible then f(n) never
overestimates the true cost of a solution
through n.

State-Space Search and the STRIPS Planner
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A* Search:

Touring Romania

Q fringe
. selected

1
: Zerind
(449)

Timisoara
(447)

(671)

Oradea

Fagaras

(413)

Rimnicu Vilcea

Bucharest

(450)

Craiova
(526)

Pitesti
(417)

Sibiu
(553)

Bucharest

(418)

Craiova
(615)

Rimnicu Vilcea
(607)
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Optimality of A* (Tree Search)

Theorem:

A* using tree search is optimal if the
heuristic h(n) is admissible.

State-Space Search and the STRIPS Planner
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A*: Optimally Efficient

o A* is optimally efficient for a given
heuristic function:
no other optimal algorithm is guaranteed
to expand fewer nodes than A*.

e any algorithm that does not expand all
nodes with f(n) < C* runs the risk of
missing the optimal solution
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A* and Exponential Space

e A* has worst case time and space
complexity of O(b')

e exponential growth of the fringe is
normal

® exponential time complexity may be
acceptable

® exponential space complexity will exhaust any
computer’ s resources all too quickly
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Overview

e The STRIPS Representation

e The Planning Domain Definition Language
(PDDL)

e Problem-Solving by Search
e Heuristic Search
» Forward State-Space Search

e Backward State-Space Search
e The STRIPS Planner
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State-Space Search

e idea: apply standard search algorithms
(breadth-first, depth-first, A*, etc.) to
planning problem:
® search space is subset of state space
® nodes correspond to world states
® arcs correspond to state transitions
® path in the search space corresponds to plan

State-Space Search and the STRIPS Planner
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DWR Example: State Space
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Search Problems

e Initial state

e set of possible actions/applicability conditions
® successor function: state - set of <action, state>
® successor function + initial state = state space

® path (solution)
e goal
® goal state or goal test function
e path cost function
¢ for optimality
® assumption: path cost = sum of step costs
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State-Space Planning as a
Search Problem

e given: statement of a planning problem
P=(0,s;9)
e define the search problem as follows:
® initial state: s;
® goal test for state s: s satisfies g
® path cost function for plan : |m7|
® successor function for state s: '(S)
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Reachable Successor States

e The successor function ":25—2S for a
STRIPS domain 2=(S,A,y) is defined as:

®* I'(s)={y(s,a) | acA and a applicable in s} for seS
* T({s1,--,8:0)= Uyt mpl (S) )
* I({sy,...,s})={s4,...,S,} >  S4,...,5,€S
* I({sy,....5.)= (M ({sy,....8.0) |

e The transitive closure of [' defines the set of all
reachable states:

® 1(8)= U koo, “({S}) for seS
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Solution Existence

e Proposition: A STRIPS planning
problem 2=(2,s,,g) (and a statement of
such a problem P=(0,s;,g) ) has a
solution iff S,n ({s}) * {}.
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Forward State-Space Search
Algorithm

function fwdSearch(O,s;,9)
State € s;
plan €

loop
if state.satisfies(g) then return plan

applicables <
{ground instances from O applicable in state}

if applicables.isEmpty() then return failure
action < applicables.chooseOne()

state < y(state,action)

plan € plan « {action)
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DWR Example: Forward Search

initial state:
crane SO
locl loc2
\ 4
crane S1

Fe—

locl loc2

plan =

take(crane,loc1,cont,pallet,pile)

move(robot,loc2,loc1)
load(crane,loc1,cont,robot)
move(robot,loc1,loc2)

v

goal state:
crane 85
locl loc2
A
crane S4

loc2

.

locl loc2
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Finding Applicable Actions:
Algorithm

function addApplicables(A, op, precs, g, S)
if precs”.isEmpty() then
for every np in precs do
if s.falsifies(o(np)) then return
A.add(o(op))
else
pp & precs’.chooseOne()
for every spin sdo
o < o.extend(sp, pp)
if o’ .isValid() then
addApplicables(A, op, (precs - pp), G’ , S)
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Properties of Forward Search

e Proposition: fwdSearch is sound, i.e. if the function
returns a plan as a solution then this plan is indeed a

solution.

® proof idea: show (by induction) state=y(s;plan) at the
beginning of each iteration of the loop

e Proposition: fwdSearch is complete, i.e. if there exists
solution plan then there is an execution trace of the
function that will return this solution plan.

® proof idea: show (by induction) there is an execution trace
for which plan is a prefix of the sought plan
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Making Forward Search
Deterministic

e idea: use depth-first search
® problem: infinite branches
® solution: prune repeated states

e pruning: cutting off search below certain
nodes

¢ safe pruning: guaranteed not to prune every solution

¢ strongly safe pruning: guaranteed not to prune every
optimal solution

® example: prune below nodes that have a
predecessor that is an equal state (no repeated

states)
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Overview

e The STRIPS Representation

e The Planning Domain Definition Language
(PDDL)

e Problem-Solving by Search
e Heuristic Search
e Forward State-Space Search

» Backward State-Space Search
e The STRIPS Planner
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The Problem with Forward
Search

e number of actions applicable in any
given state is usually very large

e branching factor is very large

e forward search for plans with more than
a few steps not feasible

e idea: search backwards from the goal
e problem: many goal states
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Relevance and Regression Sets

o Let 2=(2,s;,,9) be a STRIPS planning
problem. An action a<A is relevant for g
If
® g n effects(a) * {} and
®* g* n effects(a) = {} and g n effects™(a) = {}.

e The regression set of g for a relevant
action ac€A is:

* v-Y(g,a)=(g - effects(a)) U precond(a)
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Regression Function

e The regression function I for a STRIPS
domain 2=(S,A,y) on L is defined as:
* (g)={y'(g,a) | a€A is relevant for g} forge2t

* TGy, )= (GG \
o F'1({g1 ..... g,})= U(ke[1,n])r_1(gk) o [T gnEZL
* ({91, ga)= T ({gy,....90})

e The transitive closure of -1 defines the set of
all regression sets:

* I(9)= U jepo.-pl ({9} for g2t
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State-Space Planning as a
Search Problem

e given: statement of a planning problem
P=(0,s;g)
e define the search problem as follows:
® initial search state: g
® goal test for state s: s; satisfies s
® path cost function for plan : |m7|
® successor function for state s: I1(s)
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Solution Existence

e Proposition: A propositional planning
problem 2=(2,s,,g) (and a statement of
such a problem P=(0,s;,g) ) has a
solution iff 4sel=({g}) : s; satisfies s.
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Ground Backward State-Space
Search Algorithm

function groundBwdSearch(O,s;,g)

subgoal < g

plan & )

loop
if s,.satisfies(subgoal) then return plan
applicables <

{ground instances from O relevant for subgoal}

if applicables.isEmpty() then return failure
action < applicables.chooseOne()
subgoal € y-'(subgoal, action)
plan €< ({action) < plan
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DWR Example: Backward

Search
initial state:
s
Jeme
crane - S,

Fe—

locl loc2

plan =

take(crane,loc1,cont,pallet,pile)

move(robot,loc2,loc1)
load(crane,loc1,cont,robot)
move(robot,loc1,loc2)

v

goal state:

crane

crane

loc2

locl

loc2
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Example: Regression with
Operators

e goal: at(robot,loc1)
e operator: move(r,/,m)

® precond: adjacent(/,m), at(r,/), "occupied(m)

¢ effects: at(r,m), occupied(m), ~occupied(/), 7at(r,/)
e actions: move(robot,/,loc1)

® =7

® many options increase branching factor

e lifted backward search: use partially
instantiated operators instead of actions
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Lifted Backward State-Space
Search Algorithm

function liftedBwdSearch(O,s;,g)
subgoal € g
plan € ()
loop
if Jo:s;.satisfies(o(subgoal)) then return o(plan)

applicables <

{(0,0) | 0€O and o(o) relevant for subgoal}
if applicables.isEmpty() then return failure
action < applicables.chooseOneg()
subgoal < y-1(o(subgoal), a(0))
plan € o( {action) ) * o(plan)
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DWR Example: Lifted Backward

Search
5
L (atorg]

initial state: s, = {attached(pile,loc1),

in(cont,pile), top(cont,pile),

on(cont,pallet), belong(crane,loc1),

empty(crane), adjacent(loc1,loc2),
adjacent(loc2,loc1), at(robot,loc2),
occupied(loc2), unloaded(robot)}

operator:move(r,/,m)

¢ precond: adjacent(/,m), at(r,/), "occupied

(m)

¢ effects: at(r,m), occupied(m), ~occupied

(), nat(r,/)

IifteddeSearché
{move(r,;,m)}, S,, {at(robot,loc1)} )

Jo:s;.satisfies(o(subgoal)): no
applicables =
{(move(r,,I;,m,),{r,«<robot,
m,<—loc1})}

subgoal =

{adjacent(/,,loc1), at(robot,/,),
ﬂoccupiedelom )}

plan = {move(robot,/, loc1))

Jo:s;.satisfies(o(subgoal)): yes
o = {l,<loc1}
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Properties of Backward Search

e Proposition: liftedBwdSearch is sound, i.e. if the function
returns a plan as a solution then this plan is indeed a

solution.

® proof idea: show (by induction) subgaol=y -'(g,plan) at the
beginning of each iteration of the loop

e Proposition: liftedBwdSearch is complete, i.e. if there
exists solution plan then there is an execution trace of the
function that will return this solution plan.

® proof idea: show (by induction) there is an execution trace
for which plan is a suffix of the sought plan
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Avoiding Repeated States

e search space:

® let g;and g, be sub-goals where g; is an
ancestor of g, in the search tree

® let o be a substitution such that o(g,) € g,
e pruning:
® then we can prune all nodes below g,
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Overview

e The STRIPS Representation

e The Planning Domain Definition Language
(PDDL)

e Problem-Solving by Search
e Heuristic Search
e Forward State-Space Search

e Backward State-Space Search
» The STRIPS Planner
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Problems with Backward Search

e state space still too large to search
efficiently

e STRIPS idea:

® only work on preconditions of the last operator
added to the plan

® if the current state satisfies all of an
operator’ s preconditions, commit to this
operator
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Ground-STRIPS Algorithm

function groundStrips(0O,s,g)

plan € ()

loop
if s.satisfies(g) then return plan
applicables <

{ground instances from O relevant for g-s}

if applicables.isEmpty() then return failure
action < applicables.chooseOne()
subplan < groundStrips(0O,s,action.preconditions())
if subplan = failure then return failure
s € y(s, subplan+ {action) )
plan € plan « subplan « <{action)
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Problems with STRIPS

e STRIPS is incomplete:

® cannot find solution for some problems, e.g.
interchanging the values of two variables

¢ cannot find optimal solution for others, e.g. Sussman

anomaly:
A
c _— 3
A C
Table Table
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STRIPS and the Sussman
Anomaly (1)

e achieve on(A,B)
® put C from A onto table [¢ E>
® put Aonto B A B

e achieve on(B,C)
® put A from B onto table
® putBonto C | o

e re-achieve on(A,B)
® put AontoB

o | >

@)
o | >
1y
>
O |®

State-Space Search and the STRIPS Planner 106



STRIPS and the Sussman
Anomaly (2)

e achieve on(B,C) C
® putBonto C A B
e achieve on(A,B)
® put B from C onto table
® put C from A onto table

)

* put A onto B | = |
o)
)

> 0|

> 0|
o>

e re-achieve on(B,C)
® put A from B onto table
® putBontoC |
e re-achieve on(A,B)
® put Aonto B

W | >

O | >

B
A C
| | | |
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Interleaving Plans for an
Optimal Solution

e shortest solution e shortest solution for
achieving on(A,B): on(A,B) and on(B,C):
put C from A onto table
put A onto B

e shortest solution
achieving on(B,C):

put B onto C
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Overview

e The STRIPS Representation

e The Planning Domain Definition Language
(PDDL)

e Problem-Solving by Search
e Heuristic Search
e Forward State-Space Search

e Backward State-Space Search
» The STRIPS Planner
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