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What is a Robot?

I, Robot (2004)

Robotics Institute of America: re-programmable

multi-functional manipulator designed to move

materials, parts, tools, or specialized devices

through variable programmed motions for the

performance of a variety of tasks

“device that automatically performs complicated

often repetitive tasks,” or a “mechanism guided by

automatic controls”
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Automaton (Greek, autos “self” +
matos “thinking, animated, willing”)

http://www.etymonline.com
from English translation of 1920 play “Rossum’s Universal

Robots” by Karel Capek

from Czech robotnik (slave), robota (forced labor,

drudgery), robotiti (to work, drudge)

from Slavic (arabeit) related to German Arbeit (work)

Word coined by Capek’s brother Josef, who used it

initially in a short story

Robotics coined in 1941 in a science fiction context by
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First Robot – The Turk / Automaton Chess Player (1770)

http://en.wikipedia.org/wiki/The Turk
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First Robot – The Turk / Automaton Chess Player (1770)

http://en.wikipedia.org/wiki/The Turk

Constructed by Wolfgang von Kempelen in 1770

Played many exhibition chess games

Solved the knight-tour problem

Even played against Benjamin Franklin in France
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First Fake Robot – The Turk / Automaton Chess Player (1770)

http://en.wikipedia.org/wiki/The Turk

. . . it was a fake, however, human player
hid inside machine

Constructed by Wolfgang von Kempelen in 1770

Played many exhibition chess games

Solved the knight-tour problem

Even played against Benjamin Franklin in France
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First Real Robot – Unimate (1961)

http://en.wikipedia.org/wiki/Unimate

Created by George Devol

Worked on a General Motors assembly line in New

Jersey in 1961

Job consisted of transporting die castings from an

assembly line and welding these parts on auto

bodies

Conducted in Robot Hall of Fame in 2003
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Classical Paradigm

Focus on automated reasoning and knowledge representation

Perfect world model

Closed world assumption: “what is not currently known to be true, is false”

STRIPS (Stanford Research Institute Problem Solver)
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Shakey (Stanford Research Institute, 1966)

http://en.wikipedia.org/wiki/Shakey the robot

First mobile robot to reason about its own actions

Programs for “seeing,” “reasoning,” and “acting”

Triangulating range-finder for sensing obstacles

Wireless radio and video camera

Used STRIPS to perform “block-worlds” tasks

Conducted in Robot Hall of Fame in 2004
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Robots Today

[stanley] [bdog] [ldog] [rhex] [heli] [snake] [hand] [asimo]
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Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

Configuration (denoted by q)

a complete specification of the position of every point of the robot

Configuration Space or C-Space (denoted by Q)

space of all possible configurations of the robot, i.e., Q = {q : q is a configuration}
Collision-Free Configuration

q is collision free iff the robot does not collide with any obstacles when in

configuration q, i.e., Robot(q) ∩
`S

i=1
Obstaclei

´
= ∅

Collision-Free Configuration Space

Qfree = {q ∈ Q : q is collision free}
Path-Planning Problem: Compute collision-free path from qinit to qgoal

path : [0, 1] → Qfree is a continuous function with path(0) = qinit, path(1) = qgoal
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Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

How can the configuration be represented?

as the two-dimensional position (cx , cy ) of the robot’s center

How can the points on the robot be expressed as a function of its configuration?

Robot(cx , cy ) = {(x , y) : (x − cx)
2
+ (y − cy ) ≤ r 2}

What is the configuration space Q?

Q = R2
(same as that of a point robot)

What is the free configuration space Qfree? Is it the same as that of a point robot?

Qfree (Free Configuration Space)

path

World

Qobstacle (configuration space obstacle)

[Fig. courtesy of Latombe]

How would you compute Qfree?
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Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:

How can the configuration be represented?

(cx , cy , θ): position + orientation

How can the points on the robot be expressed as a function of its configuration?

Robot(cx , cy , θ) =

„
cos θ − sin θ cx

sin θ cos θ cy

« „
x
y

«
: (x , y) ∈ P

ff

What is the configuration space Q?

Q = R2 × S1
(S1

refers to the unit circle)

What is the free configuration space Qfree?

[Fig. courtesy of Latombe]

How would you compute Qfree?

Erion Plaku (JHU–CS336/436) 4



Examples of Configuration Spaces

manipulator with revolute joints:

How can the configuration be represented?

(θ1, θ2, . . . , θn): vector of joint values

How can the points on the robot be expressed as a function of its configuration?

forward kinematics (more later in the course)

What is the configuration space Q?

Q =

nz }| {
S1 × S1 . . .× S1

(S1
refers to the unit circle)

What is the free configuration space Qfree?

θ0

θ1

θ0

θ 1

[Fig. courtesy of Hager]

How would you compute Qfree?
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Minkowski Sums

The Minkowski sum of two sets A and B, denoted by A⊕ B, is defined as

A⊕ B = {a + b : a ∈ A, b ∈ B}
The Minkowski difference of two sets A and B, denoted by A� B, is defined as

A� B = {a− b : a ∈ A, b ∈ B}
How does it relate to path planning?

Recall the definition of the configuration-space obstacle

QObstacle = {q : q ∈ Q and Robot(q) ∩ Obstacle �= ∅}
(set of all robot configurations that collide with the obstacle)

Classical result shown by Lozano-Perez and Wesley 1979

for polygons and polyhedra : QObstacle = Obstacle� Robot

! =

Q

[Fig. courtesy of Manocha]
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Properties of Minkowski Sums

Minkowski sum of two convex sets is convex

Minkowski sum of two convex polygons A and B with m and n vertices . . .
. . . is a convex polygon with m + n vertices

. . . vertices of A⊕ B are “sums” of vertices of A and B

. . . A⊕ B can be computed in linear time and space O(n + m)

[Fig. courtesy of Manocha]

Algorithm

sort edges according to angle between

x-axis and edge normal

let the sorted edges be e1, e2, . . . , en+m

attach edges one after the other so that

edge ei+1 starts where edge ei ends

Minkowski sum for nonconvex polygons

Decompose into convex polygons (e.g., triangles, trapezoids)

Compute the minkowski sums of the convex polygons and take their union

Complexity: O(n2m2
) (4-th order polynomial)

3D Minkowski sums: [convex: O(nm) complexity] [nonconvex: O(n3m3
) complexity]
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Path Planning: From Point Robots to Robots with Geometric Shapes

We have seen path-planning algorithms when a robot is a point

How can we plan a collision-free path when the robot has a geometric shape?

. . . a key concept in path planning is the notion of a configuration space

reduce robot to a point in the configuration space

compute configuration-space obstacles (difficult to do in general)

search for a path for the point robot in the free configuration space
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Topology of Configuration Spaces

Why study it?

Extend results from one configuration space to another

Design specialized algorithms that take advantage of certain topologies

What about the topology?

Topology is the “intrinsic character” of a space

Two spaces have different topologies if cutting and pasting is required to make them the

same (think of rubber figures — if we can stretch and reshape “continuously” without

tearing, one into the other, they have the same topology)

Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

f : X → Y is called a homeomorphism iff

f is a bijection (one-to-one and onto)

f is continuous

f −1
(the inverse of f ) is continuous

examples of homeomorphisms: [disc to square]; [ (−1, 1) to R]

X is diffeomorphic to Y iff exists f : X → Y such that

f is a homeomorphism where f and f −1
are smooth (derivatives of all orders exist)

example of diffeomorphism: circle to ellipse

An n-dimensional configuration space Q is a manifold if it locally looks like Rn
, i.e.,

every q ∈ Q has a neighborhood homeomorphic to Rn

A manifold is path-connected if there is a path between any two points
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Path Planning

From Workspace to Configuration Space
simple workspace obstacle transformed into complex configuration-space obstacle
robot transformed into point in configuration space
path transformed from swept volume to 1d curve

[fig from Jyh-Ming Lien]

Explicit Construction of Configuration Space/Roadmaps
PSPACE-complete
Exponential dependency on dimension
No practical algorithms
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Motion Planning for a Point Robot in 2D

Robotic system: Single point

Task: Compute collision-free path from initial to goal position
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Motion Planning for a Point Robot in 2D

Robotic system: Single point

Task: Compute collision-free path from initial to goal position

How would you solve it?

goal

init
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Motion Planning for a Point Robot in 2D

Robotic system: Single point

Task: Compute collision-free path from initial to goal position

How would you solve it?

goal

init

Hint: How would you approximate π?
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Motion Planning for a Point Robot in 2D
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Motion Planning for a Point Robot in 2D

Robotic system: Single point

Task: Compute collision-free path from initial to goal position

goal

init

Monte-Carlo Idea:

Define input space

Generate inputs at random by sampling the input space

Perform a deterministic computation using the input samples

Aggregate the partial results into final result
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Sampling-based Motion Planning

Robotic system: Single point

Task: Compute collision-free path from initial to goal position

goal

init
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Sampling-based Motion Planning

Robotic system: Single point

Task: Compute collision-free path from initial to goal position

goal

init

Sample points
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Sampling-based Motion Planning

Robotic system: Single point

Task: Compute collision-free path from initial to goal position

goal

init

Sample points

Discard samples that are in collision
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Sampling-based Motion Planning

Robotic system: Single point

Task: Compute collision-free path from initial to goal position

goal

init

Sample points

Discard samples that are in collision

Connect neighboring samples via straight-line segments
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Sampling-based Motion Planning

Robotic system: Single point

Task: Compute collision-free path from initial to goal position

goal

init

Sample points

Discard samples that are in collision

Connect neighboring samples via straight-line segments

Discard straight-line segments that are in collision

⇒ Gives rise to a graph, called the roadmap
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Sampling-based Motion Planning

Robotic system: Single point

Task: Compute collision-free path from initial to goal position

goal

init

Sample points

Discard samples that are in collision

Connect neighboring samples via straight-line segments

Discard straight-line segments that are in collision

⇒ Gives rise to a graph, called the roadmap

⇒ Collision-free path can be found by performing graph search on the roadmap
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Probabilistic RoadMap (PRM) Method
[Kavraki, Švestka, Latombe, Overmars 1996]

0. Initialization
add qinit and qgoal to roadmap vertex set V

goal

init

1. Sampling
repeat several times

q ← Sample()
if IsCollisionFree(q) = true

add q to roadmap vertex set V

goal

init

2. Connect Samples
for each pair of neighboring samples (qa, qb) ∈ V × V

path← GenerateLocalPath(qa, qb)
if IsCollisionFree(path) = true

add (qa, qb) to roadmap edge set E

goal

init

3. Graph Search
search graph (V , E) for path from qinit to qgoal

goal

init
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Sampling-based Path Planning

Advantages

Computationally efficient

Solves high-dimensional problems (with hundreds of DOFs)

Easy to implement

Applications in many different areas

When a solution exists, a probabilistically complete planner finds a solution with
probability as time goes to infinity.

When a solution does not exists, a probabilistically complete planner may not be
able to determine that a solution does not exist.
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Sampling-based Path Planning

Advantages

Computationally efficient

Solves high-dimensional problems (with hundreds of DOFs)

Easy to implement

Applications in many different areas

Disadvantages

Does not guarantee completeness (a complete planner always finds a solution if
there exists one, or reports that no solution exists)

Is it then just a heuristic approach? No. It’s more than that

It offers probabilistic completeness

When a solution exists, a probabilistically complete planner finds a solution with
probability as time goes to infinity.

When a solution does not exists, a probabilistically complete planner may not be
able to determine that a solution does not exist.
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PRM Applied to 2D-point Robot

q = (x , y)← Sample()
x ← rand(minx , maxx)

y ← rand(miny , maxy )

goal

init

IsSampleCollisionFree(q)

Point inside/outside polygon test

path← GenerateLocalPath(qa, qb)

Straight-line segment from point qa to point qb

IsPathCollisionFree(path)

Segment-polygon intersection test
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q = (x , y)← Sample()
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PRM Applied to 2D Rigid-Body Robot
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PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)
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PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)

IsSampleCollisionFree(q)

Place rigid body in position and orientation specified by q

Polygon-polygon intersection test
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PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)

IsSampleCollisionFree(q)

Place rigid body in position and orientation specified by q

Polygon-polygon intersection test

path← GenerateLocalPath(qa, qb)

Continuous function parameterized by time: path : [0, 1]→ Q

Starts at qa and ends at qb: path(0) = qa, path(1) = qb

Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

Erion Plaku (JHU–CS336/436) Probabilistic Roadmap Approaches 7



PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)

IsSampleCollisionFree(q)

Place rigid body in position and orientation specified by q

Polygon-polygon intersection test

path← GenerateLocalPath(qa, qb)

Continuous function parameterized by time: path : [0, 1]→ Q

Starts at qa and ends at qb: path(0) = qa, path(1) = qb

Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

Erion Plaku (JHU–CS336/436) Probabilistic Roadmap Approaches 7



PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)

IsSampleCollisionFree(q)

Place rigid body in position and orientation specified by q

Polygon-polygon intersection test

path← GenerateLocalPath(qa, qb)

Continuous function parameterized by time: path : [0, 1]→ Q

Starts at qa and ends at qb: path(0) = qa, path(1) = qb

Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

Erion Plaku (JHU–CS336/436) Probabilistic Roadmap Approaches 7



PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)

IsSampleCollisionFree(q)

Place rigid body in position and orientation specified by q

Polygon-polygon intersection test

path← GenerateLocalPath(qa, qb)

Continuous function parameterized by time: path : [0, 1]→ Q

Starts at qa and ends at qb: path(0) = qa, path(1) = qb

Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

Erion Plaku (JHU–CS336/436) Probabilistic Roadmap Approaches 7



PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)

IsSampleCollisionFree(q)

Place rigid body in position and orientation specified by q

Polygon-polygon intersection test

path← GenerateLocalPath(qa, qb)

Continuous function parameterized by time: path : [0, 1]→ Q

Starts at qa and ends at qb: path(0) = qa, path(1) = qb

Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

IsPathCollisionFree(path)

Incremental approach

Subdivision approach

Erion Plaku (JHU–CS336/436) Probabilistic Roadmap Approaches 7



PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)

IsSampleCollisionFree(q)
Place rigid body in position and orientation specified by q

Polygon-polygon intersection test

path← GenerateLocalPath(qa, qb)
Continuous function parameterized by time: path : [0, 1]→ Q

Starts at qa and ends at qb: path(0) = qa, path(1) = qb

Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

IsPathCollisionFree(path)

Incremental approach

Subdivision approach

qa

q
b

Erion Plaku (JHU–CS336/436) Probabilistic Roadmap Approaches 7



PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)

IsSampleCollisionFree(q)
Place rigid body in position and orientation specified by q

Polygon-polygon intersection test

path← GenerateLocalPath(qa, qb)
Continuous function parameterized by time: path : [0, 1]→ Q

Starts at qa and ends at qb: path(0) = qa, path(1) = qb

Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

IsPathCollisionFree(path)

Incremental approach

Subdivision approach

qa

q
b

Erion Plaku (JHU–CS336/436) Probabilistic Roadmap Approaches 7



PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)

IsSampleCollisionFree(q)
Place rigid body in position and orientation specified by q

Polygon-polygon intersection test

path← GenerateLocalPath(qa, qb)
Continuous function parameterized by time: path : [0, 1]→ Q

Starts at qa and ends at qb: path(0) = qa, path(1) = qb

Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

IsPathCollisionFree(path)

Incremental approach

Subdivision approach

qa

q
b

Erion Plaku (JHU–CS336/436) Probabilistic Roadmap Approaches 7



PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)

IsSampleCollisionFree(q)
Place rigid body in position and orientation specified by q

Polygon-polygon intersection test

path← GenerateLocalPath(qa, qb)
Continuous function parameterized by time: path : [0, 1]→ Q

Starts at qa and ends at qb: path(0) = qa, path(1) = qb

Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

IsPathCollisionFree(path)

Incremental approach

Subdivision approach

qa

q
b

Erion Plaku (JHU–CS336/436) Probabilistic Roadmap Approaches 7



PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)

IsSampleCollisionFree(q)
Place rigid body in position and orientation specified by q

Polygon-polygon intersection test

path← GenerateLocalPath(qa, qb)
Continuous function parameterized by time: path : [0, 1]→ Q

Starts at qa and ends at qb: path(0) = qa, path(1) = qb

Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

IsPathCollisionFree(path)

Incremental approach

Subdivision approach
qa

q
b

qa

q
b

Erion Plaku (JHU–CS336/436) Probabilistic Roadmap Approaches 7



PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()
x ← rand(minx , maxx); y ← rand(miny , maxy );
θ ← rand(−π, π)

IsSampleCollisionFree(q)
Place rigid body in position and orientation specified by q

Polygon-polygon intersection test

path← GenerateLocalPath(qa, qb)
Continuous function parameterized by time: path : [0, 1]→ Q

Starts at qa and ends at qb: path(0) = qa, path(1) = qb

Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

IsPathCollisionFree(path)

Incremental approach

Subdivision approach

qa

q
b

qa

q
b

Erion Plaku (JHU–CS336/436) Probabilistic Roadmap Approaches 7



PRM Applied to Articulated Chain

q = (θ1, θ2, . . . , θn)← Sample()
θi ← rand(−π, π), ∀i ∈ [1, n]

IsSampleCollisionFree(q)
Place chain in configuration q (forward kinematics)
Check for collision with obstacles

path← GenerateLocalPath(qa, qb)
Continuous function parameterized by time: path : [0, 1]→ Q

Starts at qa and ends at qb: path(0) = qa, path(1) = qb

Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

IsPathCollisionFree(path)

Incremental approach

Subdivision approach

[everest] [skeleton] [knot] [manip]
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Path Smoothing

Solution paths produced by PRM planners tend to be long and non-smooth (due to
sampling and edge connections)

Post processing is commonly used to improve the quality of the paths

A common practice is to repeatedly replace long paths by short paths
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Post processing is commonly used to improve the quality of the paths

A common practice is to repeatedly replace long paths by short paths

SmoothPath(q1, q2, . . . , qn) – one version

1: for several times do
2: select i and j uniformly at random from 1, 2, . . . , n
3: attempt to directly connect qi to qj

4: if successful, remove the in-between nodes, i.e., qi+1, . . . , qj
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SmoothPath(q1, q2, . . . , qn) – one version

1: for several times do
2: select i and j uniformly at random from 1, 2, . . . , n
3: attempt to directly connect qi to qj

4: if successful, remove the in-between nodes, i.e., qi+1, . . . , qj

SmoothPath(q1, q2, . . . , qn) – another version

1: for several times do
2: select i and j uniformly at random from 1, 2, . . . , n
3: q ← generate collision-free sample
4: attempt to connect qi to qj through q
5: if successful, replace the in-between nodes qi+1, . . . , qj by q
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Motivation: Tree-based Motion Planning

PRM-based planners aim to construct a roadmap that captures the whole
connectivity of the configuration space

Good when the objective is to solve multiple queries

Maybe a bit too much when the objective is to solve a single query
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General Idea

Grow a tree in the free configuration space from qinit toward qgoal

TreeSearchFramework(qinit, qgoal)
1: T ← RootTree(qinit)
2: while qgoal has not been reached do
3: q ← SelectConfigFromTree(T )
4: AddTreeBranchFromConfig(T , q)

Critical Issues
How should a configuration be selected from the tree?

How should a new branch be added to the tree from the selected configuration?

Erion Plaku (JHU–CS336/436) Probabilistic Tree Approaches 24



Rapidly-exploring Random Tree (RRT)

Pull the tree toward random samples in the configuration space

[LaValle, Kuffner: 1999]
RRT relies on nearest neighbors and

distance metric ρ : Q × Q ← R≥0

RRT adds Voronoi bias to tree growth

RRT(qinit, qgoal)

�initialize tree
1: T ← create tree rooted at qinit

2: while solution not found do

�select configuration from tree
3: qrand ← generate a random sample
4: qnear ← nearest configuration in T to qrand according to distance ρ

�add new branch to tree from selected configuration
5: path← generate path (not necessarily collision free) from qnear to qrand
6: if IsSubpathCollisionFree(path, 0, step) then
7: qnew ← path(step)
8: add configuration qnew and edge (qnear, qnew) to T

�check if a solution is found
9: if ρ(qnew, qgoal) ≈ 0 then

10: return solution path from root to qnew
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Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement

Suggested Improvements in the Literature
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Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement

BasicRRT does not take advantage of qgoal

Tree is pulled towards random directions based on the uniform sampling of Q

In particular, tree growth is not directed towards qgoal

Suggested Improvements in the Literature
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Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement

BasicRRT does not take advantage of qgoal

Tree is pulled towards random directions based on the uniform sampling of Q

In particular, tree growth is not directed towards qgoal

Suggested Improvements in the Literature
Introduce goal-bias to tree growth (known as GoalBiasRRT)

qrand is selected as qgoal with probability p
qrand is selected based on uniform sampling of Q with probability 1− p
Probability p is commonly set to ≈ 0.05
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Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement

BasicRRT takes only one small step when adding a new tree branch

This slows down tree growth

Suggested Improvements in the Literature
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Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement

BasicRRT takes only one small step when adding a new tree branch

This slows down tree growth

Suggested Improvements in the Literature

Take several steps until qrand is reached or a collision is found (ConnectRRT)

Add all the intermediate nodes to the tree

Erion Plaku (JHU–CS336/436) Probabilistic Tree Approaches 26



Observations in High-Dimensional Problems

Tree generally grows rapidly for the first few thousand iterations

Tree growth afterwards slows down quite significantly

Large number of configurations increases computational cost

It becomes increasingly difficult to guide the tree towards previously unexplored
parts of the free configuration space
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Observations in High-Dimensional Problems

Tree generally grows rapidly for the first few thousand iterations

Tree growth afterwards slows down quite significantly

Large number of configurations increases computational cost

It becomes increasingly difficult to guide the tree towards previously unexplored
parts of the free configuration space

Possible improvements?
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Bi-directional Trees

Grow two trees, rooted at qinit and qgoal, towards each other

Bi-directional trees improve computational efficiency compared to a single tree

Growth slows down significantly later than when using a single tree

Fewer configurations in each tree, which imposes less of a computational burden

Each tree explores a different part of the configuration space

BiTree(qinit, qgoal)

1: Tinit ← create tree rooted at qinit

2: Tgoal ← create tree rooted at qgoal

3: while solution not found do
4: add new branch to Tinit

5: add new branch to Tgoal

6: attempt to connect neighboring configurations
from the two trees

7: if successful, return path from qinit to qgoal
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Sampling-based Motion Planning

Advantages

Explores small subset of possibilities by sampling

Computationally efficient

Solves high-dimensional problems (with hundreds of DOFs)

Easy to implement

Applications in many different areas

Disadvantages

Does not guarantee completeness (a complete planner always finds a solution if
there exists one, or reports that no solution exists)

Is it then just a heuristic approach? No. It’s more than that

It offers probabilistic completeness

When a solution exists, a probabilistically complete planner finds a solution with
probability as time goes to infinity.

When a solution does not exists, a probabilistically complete planner may not be
able to determine that a solution does not exist.

Erion Plaku (JHU–CS336/436) Advantages/Disadvantages of Sampling-based Motion Planning 32



Motion-Planning Problem for Systems with Differential Constraints

Given

State space S

Control space U

Equations of motions as differential equations f : S × U → Ṡ

State-validity function valid : S → {true, false}, e.g, check collisions

Goal function goal : S → {true, false}
Initial state s0

Compute a control trajectory u : [0,T ]→ U such that the resulting state trajectory
s : [0,T ]→ S obtained by integration is valid and reaches the goal, i.e.,

s(t) = s0 +

Z h=t

h=0

f (s(t), u(t))dh (1)

∀t ∈ [0,T ] : valid(s(t)) = true (2)

∃t ∈ [0,T ] : goal(s(t)) = true (3)

Erion Plaku (JHU–CS336/436) 19



Motion-Planning Methods for Systems with Differential Constraints

Decoupled approach

1 Compute a geometric solution path ignoring differential constraints

2 Transform the geometric path into a trajectory that satisfies the differential
constraints

Sampling-based Motion Planning

Take the differential constraints into account during motion planning

Erion Plaku (JHU–CS336/436) 20



Sampling-based Motion Planning with Differential Constraints

Roadmap Approaches

0. Initialization
add sinit and sgoal to roadmap vertex set V

b

b

goal

init

1. Sampling
repeat several times

s ← StateSample()

if IsStateValid(s) = true

add s to roadmap vertex set V

b

b

goal

init

b b

b b
b

b

b

b

b
b

b

b

b
b

b
b

b

b

b

2. Connect Samples
for each pair of neighboring samples (sa, sb) ∈ V × V

λ← GenerateLocalTrajectory(sa, sb)

if IsTrajectoryValid(λ) = true

add (sa, sb) to roadmap edge set E

b
goal
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b

b b

b

b

b
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3. Graph Search
search graph (V ,E) for path from sinit to sgoal
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Implementation of Roadmap Approaches with Differential Constraints

s ← StateSample()

generate random values for all the state components

IsStateValid(s)

place the robot in the configuration specified by the position and orientation
components of the state

check if the robot collides with the obstacles

check if velocity and other state components are within desired bounds

IsTrajectoryValid(s)

use subdivision or incremental approach to check if intermediate states are valid

λ← GenerateLocalTrajectory(sa, sb)

linear interpolation between sa and sb won’t work as it does not respect underlying
differential constraints

need to find control function u : [0,T ]→ U such that trajectory obtained by
applying u to sa for T time units ends at sb

known as two-point boundary value problem

cannot always be solved analytically, and numerical solutions increase
computational cost

Erion Plaku (JHU–CS336/436) 22



Tree Approaches with Differential Constraints

RRT
1: T ← create tree rooted at sinit
2: while solution not found do

Bselect state from tree
3: srand ← StateSample()
4: snear ← nearest configuration in T to qrand according to distance ρ

Badd new branch to tree from selected configuration
5: λ← GenerateLocalTrajectory(snear, srand)
6: if IsSubTrajectoryValid(λ, 0, step) then
7: snew ← λ(step)
8: add configuration snew and edge (snear, snew) to T

Bcheck if a solution is found
9: if ρ(snew, sgoal) ≈ 0 then

10: return solution trajectory from root to snew

XStateSample(): random values for state components
Xρ : S × S → R≥0: distance metric between states
XIsSubTrajectoryValid(λ, 0, step): incremental approach

λ← GenerateLocalTrajectory(snear, srand)

will it not create the same two-boundary value problems as in PRM?

is it necessary to connect to srand?

would it suffice to just come close to srand?
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Avoiding Two-Boundary Value Problem

Rather than computing a trajectory from snear to srand compute a trajectory that starts
at snear and extends toward srand

Approach 1 – extend according to random control

Sample random control u in U

Integrate equations of motions when applying u to snear for ∆t units of time, i.e.,

λ→ s(t) = snear +

Z h=∆t

h=0

f (s(t), u)dh

Approach 2 – find the best-out-of-many random controls

1 for i = 1, . . . ,m do
1 ui ← sample random control in U

2 λi → s(t) = snear +
R h=∆t

h=0 f (s(t), ui )dh
3 di ← ρ(srand, λi (∆t))

2 return λi with minimum di
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Sampling-based Motion Planning with Physics-Based Simulations

Tree approaches require only the ability to simulate robot motions

Physics engines can be used to simulate robot motions

Physics engines provide greater simulation accuracy

Physics engines can take into account friction, gravity, and interactions of the robot
with objects in the evironment

Erion Plaku (JHU–CS336/436) 25
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